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CHAPTER 1. GENERAL INTRODUCTION 

Introduction 

The human body consists of a number of articulating joints, some of wliich, such as 

the knee and hip, frequently experience loads several times that of the body's own weight. 

When these joints fail, their movement often becomes limited and painful due to the 

breakdown of the articular cartilage within the joint. As this form of cartilage degrades, the 

tissue loses its ability to transfer and distribute the loads realized during normal daily activity. 

Articular cartilage degradation is the main cause of the most prevalent form of arthritis, 

osteoarthritis or OA, which affects more than 30 million people in the United States alone. 

Since articular cartilage has a limited ability to repair itself [1], many therapies have 

been used to help alleviate the discomfort felt in arthritic joints. Recently researchers have 

described how ingestion of chondroitin sulfate and glucosamine, two components which 

make up articular cartilage, can help reduce the degradation of the tissue due to every day 

"wear-and-tear" [2]. If the breakdown of articular cartilage is detected in its early stages 

while the defect size is still small, the degradation can be arrested using localized cartilage 

cell injections [3], a therapy which was introduced commercially by Genzyme Tissue Repair. 

However, if the defect becomes too large, the damaged tissue needs to be surgically excised 

and a total joint replacement is often performed. The surfaces of these artificial joints are 

made up of low fiiction polymers having limited life-spans which often create more 

compUcations than they cure because of the need for additional surgeries. In order to 

completely restore the fimctionality of the joints affected by advanced arthritis, biological 
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grafts of articular cartilage created in vitro, with the same characteristics as tissue found in 

vivo, may be the best solution. 

Over the last 40 years many researchers have helped to describe the composition and 

function of native articular cartilage so that the parameters for producing biochemically and 

mechanically flmctional graft tissue are known. In order to develop an adequate biological 

graft, the replacement tissue needs to be cultured in an environment which closely resembles 

a physiological system. Since articular cartilage experiences large pressure changes, has a 

continuous nutrient requirement, and must be maintained at a constant temperature, the 

development of a suitable culture environment must employ the principles of engineering. 

Perhaps the best engineering discipline equipped with the background to investigate this 

problem is chemical engineering. 

Chemical engineers frequently study situations in which mass transfer, heat transfer, 

thermodynamics, and fluid flow need to be analyzed and optimized. With the appropriate 

biological background, a chemical engineer can design and create an in vitro reaction system 

having growth conditions similar to that of a native system. In recent years, a new area of 

chemical engineering has been developed, termed tissue engineering, which combines the 

biological sciences with engineering fundamentals to create functional repair tissue. 

Examples of tissues currently being investigated include skin, cartilage, nerve, liver, and 

kidney. Regenerated dermal tissue has already been developed commercially to be used for 

skin grafts and cosmetic therapies and has proven to be quite successful. Before articular 

cartilage can be developed commercially using the concepts of tissue engineering, the growth 

conditions which stimulate cartilage regeneration need to be completely determined. 
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In the last decade there has been much progress in optimizing the culture conditions 

needed to produce regenerated cartilage tissue with many of the same biochemical 

characteristics as native tissue. However, the culture conditions needed to produce 

mechanically functional repair tissue have yet to be determined. It was the goal of this study 

to develop a reaction system to regenerate articular cartilage which implements many of the 

same conditions found in vivo based on the hypothesis that these stresses would help create a 

fully functional repair tissue. 

Dissertation Organization 

This dissertation consists of three separate manuscripts which have been or will be 

submitted to the journals indicated below the title of each paper. These manuscripts are listed 

in this dissertation as chapter 2, chapter 3, and chapter 4. Preceding these manuscripts, in this 

chapter, are sections providing a general background on articular cartilage and an extensive 

literature review. Following the manuscripts, as chapter 5, are the general conclusions made 

from the results-to-date and recommendations for future research. 

Background 

Varieties of Arthritis 

Arthritis has plagued the human race ever since mankind first walked the earth. 

Although there are several different types of arthritis, they all share some common 

symptoms. These include limited and/or painful movement of an afflicted joint along with 

some degree of inflammation (either primary or secondary). In some types of arthritis, 

damage to the underlying cartilage and/or bone can occur. The literal meaning of this often 
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debilitating disease comes from the Greeks who used it to mean inflammation of one or more 

joints. With the many different types of arthritis known today, there are four which occur 

most commonly in the world's population. These are ankylosing spondylitis, psoriatic 

arthritis, rheumatoid arthritis, and osteoarthritis [4]. 

Ankylosing spondylitis (AS) occurs more prevalently in men than in women, 

generally in individuals 20 to 30 years old [5]. This form of arthritis affects the spine and 

other joints of the trunk. In the latter stages of this disease the affected joints begin to fuse 

together, severely limiting their mobility. Discomfort may be noted in the thighs when 

walking or standing because minor changes in the sacroiliac joint within the pelvis may 

occur. Only in rare cases is this disease crippling; in fact most cases are so mild they will go 

undiagnosed for decades. Approximately 1 million Americans suffer from this form of 

arthritis [4,5]. 

Psoriatic arthritis (PA) involves a common skin condition known as psoriasis and the 

inflammation that occurs in its presence. Psoriasis causes the skin to assume an inflamed, 

reddish color. Also, the skin around the elbows and knees often becomes scaly in 

appearance. The inflammation of these joints caused by the psoriasis may cause some pain 

and discomfort but the overall effects are minor. In most cases, anti-inflammatory drugs and 

mild exercise are all that are needed for relief. Approximately 500,000 Americans suffer 

from this form of arthritis [4,5]. 

Rheumatoid arthritis (RA) is perhaps the most mysterious form of arthritis. Even 

though this form of arthritis has been clearly distinguished for nearly 200 years, the exact 

cause of the disease is still unknown. RA is thought to be an autoimmune response to an 
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unknown infectious agent. Typically the synovial membrane lining becomes inflamed as 

cells within the membrane divide and grow. As these inflammatory cells reach an elevated 

cellular density, the joint becomes swollen and tender to the touch. If the arthritic process 

continues for years, then enzymes secreted from the inflammatory cells can gradually digest 

the articular cartilage found within the joint, as well as the underlying bone. In its advanced 

stages RA can be a painful form of arthritis, but with early diagnosis and treatment most 

people tend to do well and lead normal lives. Approximately 7 million Americans, three-

quarters of which are women, suffer from this form of arthritis [4-6]. 

Osteoarthritis (OA) is the most widely spread form of arthritis, affecting more than 30 

million people in the United States [4-6], When articular cartilage is damaged, either by a 

traumatic injury or gradual "wear and tear", the tissue begins to degenerate irreversibly, 

causing the joint to fail. If diagnosed early enough, oral ingestion of proteins found in 

articular cartilage may slow or even stop OA's progressive degeneration. Minor defects can 

also be treated with cartilage cell injections under a periosteal flap. These cells, called 

chondrocytes, excrete the proteins found in healthy cartilage and can help impede fluther 

degeneration of the damaged tissue. If the defect becomes too large, the only relief available 

is excision of the damaged tissue and its replacement with a low friction prosthesis. These 

artificial prostheses often have a limited life span and require major orthopedic surgery for 

their insertion and removal. Considering the large niunber of individuals affected by this 

disease, this is both a major medical and economic concern. Biological grafts made from full 

section regenerated cartilage tissue created in vitro have been proposed to help alleviate this 

growing problem. However, for the grafts to be able to withstand the repeated physiological 
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loads normally occurring in tissue found in vivo, these grafts must be developed in a manner 

so that their mechanical integrity will not be compromised over a long term period. 

Varieties of Cartilage 

Cartilage is a unique connective tissue combining resilience and rigidity with a high 

tensile strength and a great resistance to compressive and shear forces. This tissue is 

avascular, alymphatic, and has the lowest cell density of any tissue in the body. Found 

throughout the body, cartilage tissue serves different functions depending on its type and 

location. Minute features in its structure help distinguish among three separate cartilage 

types. These are elastic cartilage, fibrocartilage, and hyaline cartilage. 

Elastic cartilage makes up the connective tissue found in the external ear, the auditory 

tube, epiglottis, and the comiculate and cuneiform cartilage's of the larynx [7,8]. Having an 

opaque yellowish color, this flexible form of cartilage is made up of an abundant amount of 

branching, elastic fibers composed of elastin. These fibers penetrate in all directions 

throughout the tissue and help provide this form of cartilage with its support structure 

characteristics. 

Fibrocartilage is found in the intervertebral discs of the vertebral colurrm, in the 

symphysis pubis, and in a few other joints [7,8]. It is made up of parallel collagenous 

bundles which encapsulate the cells in a thick, compact maimer. This arrangement gives this 

form of cartilage the ability to be somewhat rigid and to handle compressive loads while still 

allowing some minor flexibility. It is thought that this cartilage type may be a transitional 

form between hyaline cartilage and dense cormective tissue [7]. 
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Hyaline cartilage is the most abundant form of cartilage found in the adult body. It 

makes up the cartilage of the costal, tracheal and laryngeal regions, nasal cartilage, and the 

articular cartilage found on the ends of bones [7,8]. Articular cartilage precedes bone 

formation and is the main focus of degenerative cartilage disease studies. 

Articular Cartilage Morphology 

Articular cartilage has a pearly blue color and is both shiny and translucent in its 

appearance. Covering the ends of articulating joints, it is a nearly ftictionless tissue through 

which all but the most extreme compressive loads are distributed. Articular cartilage is 

made up of two separate phases: a solid phase made up of collagen fibrils, proteoglycans, and 

chondrocytes, and a fluid phase made up of interstitial water and electrolytes. 

The collagen fibrils are the most abundant organic component of articular cartilage 

making up 50-80% of the dry weight and 15-22% of the wet weight [9]. The main type of 

collagen found in the tissue is type II, along with trace amounts of types VI, IX, and XI. The 

basic structural unit of all types of collagen is tropocollagen which is composed of three 

polypeptide chains. These a chains are coiled into left-handed helices which are further 

coiled about each other into right-handed triple helices. Each of these a chains are made up 

of amino acids sequenced in a known manner: glycine/proline/0 where O is either 

hydroxyproline or some other amino acid. Each tropocollagen molecule is rod-shaped 

having an approximate diameter of 1.4 nm and an approximate length of 300 nm [10]. These 

tropocollagen molecules polymerize into larger collagen fibrils in a unique maimer. Each 

collagen fibril is formed firom a quarter stagger array of tropocollagen giving the fiber its 

strength and its banded appearance when viewed using electron microscopy (Fig. 1). Type n 
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D 

Figure 1. Hierarchical organization of a collagen fibril. A) The alpha chain. B) A triple 
helix. C) A tropocollagen molecule. D) The quarter stagger array of a collagen fibril. Adapted 
firom reference 10. 
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collagen varies in diameter (20 to 200 nm) and there is no set length range. Biochemical 

evidence indicates that type 11 collagen covalently binds to type IX [11,12]. Since type IX is 

known to have a glycosaminoglycan chain attached to its al chain, this allows for a cohesive 

collagen-proteoglycan matrix to be established. The exact roles of types VI and XI collagen 

in the extracellular matrix are still unknown as of now. 

Proteoglycans make up 4-7% of the wet weight of articular cartilage [9]. While 

interacting with the collagen fibrils to make up the extracellular matrix, they also help with 

water retention throughout the tissue. The structure of a proteoglycan molecule consists of a 

core protein to which oligosaccarides and two types of glycosaminoglycans are attached (Fig. 

2a). When an animal is in its beginning years of development nearly all of the 

glycosaminoglycan present is in the form of chondroitin sulfate. However, as an animal 

matxu-es, nearly one-third of the glycosaminoglycan develops into keratan sulfate with the 

other two-thirds consisting of chondroitin sulfate. The typical length of a proteoglycan 

molecule can range from 200-400 nm. At the N-terminal region of the core protein, the 

proteoglycan attaches to a hyaluronate chain via a link protein. When enough proteoglycans 

attach to an hyaluronic acid chain a proteoglycan aggregate is formed (Fig. 2b). The majority 

of the proteoglycans present in articular cartilage are the large aggregating type (50-85%) 

while the remainder of the proteoglycans are the large non-aggregating type (10-40%) and 

smaller distinct forms [9]. Chondrocytes are the only cell type found in articular cartilage. 

Because cartilage has no blood or lymph supply, the chondrocytes get all their nutrients from 



www.manaraa.com

10 
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O l i g o s a c c a r i d e  

R i c h  R e g i o n  

C h o n d r o i t i n  s u l f a t e  

R i c h  R e g i o n  H y a l u r o n i c  A c i d  

L i n k  P r o t e i n  

P r o t e i n  C o r e  

L i n k  P r o t e i n  

2 0 0 - 4 0 0  n m  

H y a l u r o n i c  A c i d  

B 

Figure 2. A) The organization of a proteoglycan monomer, and B) a proteoglycan aggregate 
composed of many monomers attached to a hyaluronate chain. Adapted from reference 9. 
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the synovial fluid surrounding tlie articular joint. Found within cavities called lacunae, these 

cells are known to produce and excrete type II collagen and proteoglycans into the 

surrounding extracellular matrix. When chondrocytes are grown in a monolayer they 

dedifferentiate into fibroblastic like cells, losing their three-dimensional characteristics. As 

fibroblasts, these cells produce type I collagen that is typically found in fibrocartilage. When 

removed firom a monolayer the fibroblasts differentiate back into chondrocytes and will 

remain that way as long as they are cultured in a three-dimensional environment. 

Interstitial water, along with its dissolved electrolytes, make up 60-85% of the wet 

weight of articular cartilage. When cartilage is compressed the water within the tissue is 

pushed out through interstitial pores into the surrounding synovial fluid. When the 

compressive force is released, the tissue acts as a sponge, pulling the water back in along 

with nutrients necessary for cell metabolism. The majority (-65%) of the water present in 

articular cartilage associates with the negatively charged groups on the proteoglycans, with 

the balance of the water found in the intrafibrillar and intracellular compartments of the 

collagen and chondrocytes, respectively. 

Articular Cartilage Structure 

Articular cartilage is organized into a unique trizonal arrangement thought to give the 

tissue its ability to withstand large compressive loads (Fig. 3). The top layer, called the 

superficial tangential zone, comprises 10-20% of the tissue. In this layer, the collagen fibrils 
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B 

Figure 3. The organization of A) cells and B) collagen throughout the three zones of 

articular cartilage. 
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are orientated parallel to the articular surface in order to withstand shear forces that the tissue 

endures during normal joint movements. The chondrocytes, dispersed within the collagenous 

matrix, appear flattened in this region. The middle zone, comprising 40-60% of the tissue, is 

composed of collagen fibrils orientated at various angles. The fibrils at the top of the middle 

zone have a very shallow angle with respect to the articular surface. Proceeding deeper 

through the middle zone, the fibril angle continuously increases. Since the average collagen 

fibril angle in the middle zone is 45°, the chondrocytes found in this zone appear more 

rounded. This region is a transitional zone between the superficial tangential zone and the 

deep zone. The deep zone comprises 30% of articular cartilage tissue. The collagen fibrils in 

this region, orientated perpendicular to the articular surface, serve two purposes. First, this 

arrangement helps absorb compressive loads applied to the tissue, and second, it helps 

anchor the tissue to the underlying subchondral bone. With these three unique layers, 

articular cartilage can handle a wide variety of compressive and shear forces. 

Literature Review 

Characterization of Articular Cartilage 

Even though osteoarthritis was clearly distinguished as a separate disease from 

rheumatoid arthritis during the beginning of the twentieth century [4], articular cartilage was 

not studied for decades afterwards. All that was known, until the second half of the twentieth 

century, was that articular cartilage has a very limited abiUty to repair itself [1]. From 1952 

to 1979, the main focus of articular cartilage research was characterizing the makeup, 

function and behavior of the tissue. Articular cartilage was first characterized 
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histochemically by Eichelberger et al. [13-15] in a three-part study ranging from 1952 to 

1959. In 1954, Belanger [16] showed that radioactive sodium sulfate became incorporated 

first into chondrocytes, and then into the extracellular matrix. Revel and Hay [17] confirmed 

that the cells were the precursors to the extracellular matrix while investigating collagen 

synthesis. These two studies were the first to show proteoglycan and collagen synthesis and 

secretion from the chondrocytes, respectively. 

Since very little was known about the morphology of articular cartilage in the early 

1960's, researchers began to study the individual components of the tissue, as well as the 

tissue's behavior. Many studies focused on the in vitro culture of chondrocytes. In 1966, 

Coon [18] successfully cultured chick chondrocytes and first described the change in 

phenotype typical of the cells when grown in a two-dimensional environment (a monolayer). 

Marming et al. [19] were able to isolate and culture human chondrocytes in the following 

year. Chondrocytes were first cultured in a three-dimensional envirorunent by Horwitz and 

Dorfinan in 1970 [20]. This study showed that chondrocytes would not dedifferentiate when 

grown in a support matrix. WTiile others described culturing chondrocytes in vitro in the 

following years [21-23], as well as chondrocyte characteristics [24], it was not until 1978 that 

Benya et al. [25] made an important discovery. They showed that chondrocytes grown in a 

monolayer produce type I but not type n collagen, which is found in fibrocartilage and not in 

articular cartilage. This outlined the importance of culturing chondrocytes in three 

dimensions in order to develop healthy articular cartilage. 

The characterization of articular cartilage tissue, both healthy and osteoarthritic, was 

thoroughly researched between 1965 and 1979. Bollett and Nance [26] first described the 
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biochemical characteristics of normal and osteoarthritic articular cartilage. They showed that 

osteoarthritic tissues typically exhibit an increase in water content and a decrease in 

proteoglycan content. To set a standard for grading osteoarthritic tissue, Mankin et al. [27] 

introduced a system to classify the degree of change observed at the micro-level. The system 

focused on cellularity, cell number, the appearance of cartilage fibrillation, and proteoglycan 

loss. In 1967, Edwards [28] described some of the physical characteristics of articular 

cartilage. Edwards described the behavior of interstitial water movement throughout the 

tissue when subjected to a compressive load. At this time the composition of interstitial 

water was defined [29]; however, little was known of the fine structure of articular cartilage 

through which it flowed. Bullough and Goodfellow [30] first described the minute 

appearance of articular cartilage which was followed by microscopic studies that helped 

fiarther define the tissue's structure [31,32]. 

In the mid to late 1970's researchers began to study the effects of mechanical stress 

and pressiu-e on articular cartilage. Mansour and Mow [33] first subjected the tissue to high 

pressures while studying its permeability. Caterson and Lowther [34] first reported that 

proteoglycan synthesis increases when articular cartilage is subjected to a mechanical stress. 

It was not until the following year that Veldhuijzen et al. [35] subjected chick chondrocytes 

in vitro to intermittent compressive forces. They showed that chondrocytes deposit more of 

their matrix when subjected to intermittent pressures and that the nuclear and cell dimensions 

increased. Even though the chondrocytes were only cultured for short time periods (24 to 48 

hours), this study showed the importance of using intermittent compressive forces to 

maximize matrix production. 
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Enhancing Cartilage Matrix Production 

By 1979, articular cartilage and its components had been well described, however, 

studies on enhancing tissue production and repair had only begun. Studies to determine the 

roles of type II collagen and proteoglycans continued to be performed using X-ray diffraction 

[36] and electron microscopy [37,38] to further define the tri-zonal arrangement of the 

collagen fibrils. Hardingham [39] first described the structure of proteoglycans and how they 

are organized throughout the extracellular matrix. Muir suggested that the proteoglycans 

organize the intracellular matrix of articular cartilage [40] and went on to describe how 

proteoglycan aggregates are formed by chondrocytes [41]. Poole [42] described how the loss 

of proteoglycans in the extracellular matrix contributes to osteoarthritis. He found that 

proteoglycans play a vital role in fluid retention within the extracellular matrix, and that 

without them articular cartilage cannot remain intact. As the importance of proteoglycans 

was realized, many researchers explored the growth conditions needed to enhance their 

production. Also, the growth conditions needed for type II collagen production by the 

chondrocytes was imder investigation. These two interests were explored separately. 

In a follow-up study, Benya and Shaffer [43] cultured chondrocytes in agarose gels in 

order to assess environmental effects on collagen production. They showed that 

chondrocytes grown in a monolayer will re-express the differentiated collagen phenotype 

when grown in a three-dimensional environment. Kimura et al. [44] confirmed this finding 

while culturing chondrocytes in collagen gels. These studies fiirther defined the importance 

of culturing chondrocytes in a three-dimensional environment to generate the structural 

components necessary for articular cartilage regeneration. 
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Although gels and agars were ideal for in vitro culture of chondrocytes, a support 

matrix that was biosorbable was necessary if regenerated cartilage was ever to be implanted 

into an in vivo environment. Vacanti et al. [45] studied the effect of three synthetic polymers 

on cell growth and viability. Polyorthoesters, polyanhydride and polyglactin were all 

cultured with hepatocytes, pancreatic islets and intestinal cells. Vacanti et al. found that the 

cell viability was greatest on polyglactin (over 90%), followed by polyorthoesters (around 

80%) and polyanhydride (less than 10%). Perhaps it was these promising results with 

polyglactin, coupled with a study comparing polyglactin and polyglycolic acid done by Craig 

et al. [46], that later led Cima et al. [47] to first use fiber-based felts of polyglycolic acid as a 

support structure. Because of its biosorbable properties, polyglycolic acid has become the 

most used support structure for regenerating articular cartilage to date (more discussion later). 

Many researchers explored the influence of mechanical loading on cartilage cell 

culture in the hopes of enhancing proteoglycan synthesis. The mechanical properties of 

articular cartilage were well described within this decade. Paul [48] was one of the first to 

report on how cartilage can be subjected to forces several times that of the body's own 

weight during dynamic loading within an articulating joint. Armstrong and Mow [49] 

described how the material properties of articular cartilage can change as the tissue 

degenerates. Two years later they described how healthy articular cartilage acts as a solid 

swollen with water and has the ability to withstand a wide range of stresses and strains [50]. 

Although the mechanical characteristics of articular cartilage were becoming well known, the 

influence of mechanical force on cartilage matrix formation was not fully understood. 
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Jones et al. [51] first described how continuous mechanical force could actually 

suppress the ability of a chondrocyte to synthesize proteoglycans. Copray et al. [52] later 

confirmed that compressive forces can be detrimental to articular cartilage formation unless 

applied in a certain manner. When chondrocytes are subjected to intermittent compressive 

forces they increase their synthesis and content of proteoglycans, which was confirmed in a 

follow-up smdy by Veldhuijzen et al. [53]. When the level of intermittent compressive force 

enters the in vivo domain, the rate of proteoglycan synthesis increases until it exceeds 

physiological levels [54]. However, for articular cartilage to be subjected to in vivo 

pressures, compression must be done in a hydrostatic or physical manner to avoid 

compressing the gas phase. Lippiello et al. [55] first subjected bovine and human articular 

cartilage to hydrostatic pressures up to the physiological domain. They found that 

proteoglycan synthesis decreased by 50% as the hydrostatic pressure level was increased 

fi-om 0.5 MPa to 2.0 MPa. However, as the pressure level was further increased to the 

physiological domain (2.5 MPa), the rate of proteoglycan synthesis increased by 55%. This 

study emphasized the importance of using physiological pressures to further enhance matrix 

production. As the decade came to an end, chondrocyte response to mechanical stimuli 

continued to be investigated [56,57]; however, combining the conditions enhancing cartilage 

regeneration was yet to be done. 

Regeneration of Articular Cartilage 

During the early 1990's many studies involving articular cartilage were focused on 

using explant cultures exposed to mechanical stimuli. Hall et al. [58] confirmed 

proteoglycan synthesis was enhanced when subjected to hydrostatic pressures in the 
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physiological domain. By studying a hydrostatic pressure range of 2.5 to 50 MPa, they 

concluded that matrix production was stimulated from 3.0 to -18.0 MPa; however, as the 

pressure level exceeded 18.0 MPa, the rate at which proteoglycans were synthesized steadily 

decreased. The effects of applying hydrostatic pressure, both positive and negative, under 

cyclic compressive loads were first described by Parkkinen et al. [59] and Suh and Woo [60], 

respectively. Both studies showed that cyclic hydrostatic pressures significantly influenced 

the production of extracellular matrix within their respective explant cultures. However, 

others showed that compression applied in a physical manner inhibited the rate of 

proteoglycan synthesis. Sah et al. [61] examined the effects of applying physical 

compression to cartilage explants and found that newly formed proteoglycans were not 

retained within the extracellular matrix. Burton-Wurster et al. [62] later subjected canine 

explants to both static and intermittent physically applied compressive loads ranging from 0.5 

to 1.2 MPa for up to 18 hours. They foimd that matrix production was inhibited in static 

cultiu-es and did not differ from intermittent cultures. These five studies showed that 

hydrostatic pressurization, as opposed to physical compression, was a better means of 

producing the extracellular matrix of articular cartilage. 

As studies involving cartilage explants continued, Cima et al. [47] introduced an 

attractive and potentially better way to cultiure articular cartilage. They isolated liver and 

cartilage cells from healthy tissue and transplanted these cells onto biosorbable polymer 

support matrices. Two polymers were investigated in their study: a polyglycolic acid (PGA) 

fiber-based felt and a copolymer of polylactic acid and polyglycolic acid (PLGA) cut into 

braided threads. After being grown subcutaneously in nude mice, the regenerated articular 
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cartilage was excised and analyzed. Histological sections showed evidence of cartilage 

formation very similar in appearance to normal human fetal cartilage. Because of their 

biocompatibility, degradability and processability characteristics, these polymer support 

matrices offer many advantages. PGA and PLGA have both been approved by the FDA and 

have been used as suture materials for years. By varying the ratios of one polymer to the 

other in a support matrix, controlling the rate at which the polymer degrades is possible. 

These polymers degrade by hydrolysis, forming natural intermediates, which are removed 

from an in vivo system through normal metabolic pathways. Perhaps the most attractive 

quality of using these support matrices is that tliey can be processed into a variety of shapes 

and sizes using melt and solvent techniques. Combining these features makes it possible to 

develop full section biological grafts to use as replacement tissue for those suffering from 

osteoarthritis. 

The possibility of creating predetermined shapes and sizes of regenerated articular 

cartilage led many researchers to explore this option. Klompmaker et al. [63] attempted to 

use an aromatic porous polyurethane as a support matrix for regenerating rabbit and dog 

articular cartilage. Because this polymer can release toxic degradation products, they also 

used a copolymer of L-lactide and e-caprolactone with dog chondrocytes. They foimd that 

using these polymers in vivo resulted in the formation of fibrocartilaginous repair tissue 

which seemed to function adequately in the dog but showed signs of degeneration in the 

rabbit. This study further confirmed the importance of using biocompatible polymers when 

culturing articular chondrocytes. 
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At the Massachusetts Institute of Technology (MIT), researchers focused on using 

nonwoven polymer meshes of polyglycolic acid (PGA) and porous poIy(L)lactic acid 

(PLLA) for neocartilage formation. Freed et al. [64] used these polymers to culture articular 

bovine and costal human cartilage in vitro and in vivo. They found that the cell growth rate 

was twice as high on the PGA as it was on the PLLA substrates. The difference in growth 

rates was attributed to the polymers' geometry and degradation rates. Freed et al. [65] later 

seeded human costal chondrocytes on PGA and cultured them in petri dishes and spinner 

flasks. Scaffolds in the well-mixed spinner flasks did not suffer from the mass transfer 

limitations that are commonly associated with static culture conditions. Freed et al. [66] 

went on to describe the growth kinetics of chondrocytes cultiured on varying thicknesses of 

PGA. As the scaffold thickness increased, the cell growth rate decreased in static cultiu-es. 

However, in well-mixed cultxu-es, high cell growth rates were maintained over seven weeks. 

These two studies outlined the importance of culturing the cell/polymer constructs in an 

environment which minimizes the difflisional limitations of nutrients to the chondrocytes. 

Freed et al. [67] also demonstrated the orientation of the tri-zonal arrangement in 

cell/polymer constructs in a study focusing on scaffold composition. Scaffolds from mixed 

cultures were found to have a superficial tangential zone with collagen orientated flat to the 

surface and a deep zone with collagen orientated perpendicular to the surface. They 

attributed the formation of the layered arrangement to the mixed cultured envirormient in 

which the tissue was regenerated. Kim et al. [68] later cultured bovine articular chondrocytes 

on PGA scaffolds which were configured into four unique shapes: a triangle, a rectangle, a 

cross, and a cylinder. They concluded that chondrocytes cultured onto their respective 
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scaffolds will synthesize the extracellular matrix within the confines of the predetermined 

shape. This study confirmed that it was possible to develop articular cartilage into given 

shapes and sizes. 

Although these researchers at MIT were successfully culturing chondrocytes on PGA 

to regenerate articular cartilage, the tissue they were developing probably was not fully 

functional within an in vivo system. This perhaps was a result of culturing chondrocytes in 

an envirotmient where they were not subjected to the compressive forces that they normally 

sense in vivo. In 1994, Magari [69] and Heath and Magari [70] concluded a study that was 

the first to combine culturing cell/polymer constructs with the application of intermittent 

pressurization. She found that by applying a 50 psi intermittent pressure to bovine 

chondrocytes seeded onto PGA, the constructs developed appeared qualitatively stronger 

compared to control samples. Fluorescence microscopy qualitatively confirmed that 

pressurized samples consisted of more type 11 collagen than control samples. However, 

results involving the production of the extracellular matrix in pressurized samples varied, 

motivating future studies to be conducted at greater intermittent pressure levels. 

Current Advances and New Techniques 

During the last few years there has been a tremendous increase in interest in the repair 

and replacement of articular cartilage. At MIT, Freed et al. have continued to examine the 

effects of mixing [71-73], the kinetics of mass transfer [74], in vitro culture [75] and in vivo 

implantation [76]. Their results confirm that articular cartilage constructs can be developed 

in an in vitro environment when nutrient requirements for the chondrocytes are fiilfilled. In a 

recent publication regarding mixing [73], they introduced a new approach for seeding PGA 
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scaffolds with articular chondrocytes. "Dynamic cell seeding" involves immobilizing PGA 

scaffolds within a spinner flask and placing the chondrocytes in the stirred medium. Since 

the cells have a high affinity for binding to the PGA, they are distributed throughout the 

suspended scaffolds. This technique has proved to be especially useful as the thickness of the 

scaffold is increased since mixing ensures that cells penetrate the scaffold rather than 

adsorbing solely to the polymer surface. In their most current work, Freed et al. describe 

how dynamic mixing at high cell concentrations (1.33 x 10^ to 6.67 x 10^ cells/cm^) promoted 

the formation of cell aggregates ranging fi-om 20 to 32 fim in diameter [77]. These 

aggregates were found to enhance the rate of cell attachment to the PGA scaffolds so that all 

cells adhered to the polymer within one day. Other researchers at MIT have explored the 

possibility of using regenerated cartilage for reconstructive and aesthetic surgery of the nose 

[78]. By creating anatomical models of nasal septal cartilage, they developed polymer 

constructs showing sufficient structural stability in vitro and in vivo, opening up new 

possibilities for facial plastic surgery. 

Studies focusing on chondrocyte response to variations in the culture conditions are 

still being conducted. Ishizaki et al. [79] demonstrated how chondrocytes produce autocrine 

signals when cultured at high cell densities, enabling them to survive in the absence of serum 

or other exogenous proteins. However, at low cell densities they foimd that the chondrocytes 

die by apoptosis. Only by using medium from high cell density cultures, serum or a 

combination of known growth factors, can chondrocytes survive at low cell densities. 

Others have demonstrated how chondrocytes respond to decreases in culture 

temperature while being stored. BCim et al. [80] described the effects of culturing 
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chondrocytes at 4°C. By using an appropriate medium they were able to store chondrocytes 

for up to 4 weeks, at which point approximately 47% of the cells were still viable. These 

cells also maintained their ability to form new cartilage when cultured in polymer matrices. 

Ohlendorf et al. [81] determined how well chondrocytes in articular cartilage explants survive 

during cryopreservation. Chondrocyte survival was found to be limited to the superficial 

layer of the explants, with or without the addition of dimethyl sulfoxide. Tavakol et al. [82] 

described similar findings while characterizing freeze-thawed articular cartilage at the 

ultrastructural level. 

Other ultrastructural assessments of chondrocytes have been made in cultiares using 

new polymer systems. Reissis et al. [83] demonstrated the use of poly-ethly-methacrylate 

(PEMA) and tetra-hydrofurfliryl-methacrylate (THFMA) as a potential biomaterial for 

regenerating articular cartilage. As with previous studies with PGA, they found that these 

materials were suitable for cartilage repair, creating more possibilities for the development of 

regenerated tissue. Frondoza et al. [84] recently described culturing chondrocytes in 

microcarrier suspension cultures. Chondrocytes were found to attach to the microcarriers, 

helping them to retain their rounded shape and producing the appropriate extracellular 

matrix. 

At the University of Texas Health Science Center, Athanasiou et al. [85] continued 

characterizing PLA-PGA orthopedic implants. They reported on the degradation times of 

seven different combinations of PL A and PGA. Ranging from seven days to four years, 

these degradation times allowed researchers to customize orthopedic implants by choosing a 

polymer combination best suited to the situation. In a follow-up study, Thompson et al. [86] 
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subjected polymer constructs, composed of 50%-50% PLA-PGA seeded with chondrocytes, 

to dynamic compressive loads. Using a physical compression apparatus over a 42 day period, 

they found that dynamic loading enhances the degradation rate of the copolymer. 

At Advanced Tissue Sciences in La Jolla, California, researchers explored several 

different aspects of tissue regeneration using rabbit and bovine chondrocytes. Dunkelman et 

al. [87] constructed a closed bioreactor system in which PGA scaffolds seeded with rabbit 

chondrocytes were cultured. They found that their regenerated tissue had similar biochemical 

characteristics to constructs described in previous studies. The advantage of the biosystem 

they developed was that the scaffolds could be cultured for several weeks without 

interruption. Because the constructs could be cultured for long-term durations, the 

regenerated tissue was allowed to develop more fully. Zimber et al. [88] explored the effects 

of using the TGF-P growth factor. TGF-P was found to increase the proliferation rate of 

chondrocytes in a monolayer as well as to increase the ability of the chondrocytes to produce 

their extracellular matrix when cultured on PGA. In a recent study, Grande et al. [89] 

described culturing chondrocytes on four different support materials. These materials were 

composed of type I collagen, nylon, PGA and Vicryl. PGA cultures showed the greatest 

production of sulfated glycosaminoglycans while type I collagen cultures produced the 

greatest amount of type n collagen. These constructs were also cultured in a closed-loop 

system which improved the rates of matrix production. 

Over the past couple decades researchers have used chondrocytes from animals such 

as cows, rabbits and dogs because they are easily attainable. Although much has been 

learned about chondrocyte behavior, tissue regenerated from these cells has little practical 
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use. Because human articular cartilage can be difficult to obtain, some researchers have 

started investigating the regenerative properties of equine cartilage. Horses often suffer fi-om 

joint disease and replacing damaged tissue with functional regenerated tissue would at times 

be more attractive than euthanasia. Equine cartilage has recently been shown to have similar 

biochemical and mechanical characteristics as human articular cartilage [90]. At veterinary 

colleges across the country, researchers have made much progress with understanding joint 

disease in the horse. At Colorado State University, Wayne Mcllwraith has been a leading 

force in diagnosing joint defects in the horse. In his recent publication, Mcllwraith [91] 

thoroughly describes everything from equine joint anatomy to current ongoing research. 

Researchers such as Rory Todhunter, George Lust and Alan Nixon have been examining fiill-

thickness articular cartilage defects at Cornell University for the past several years. In 1994, 

they reported on a study involving resurfacing articular cartilage defects with a chondrocyte-

fibrin matrix [92]. This resurfacing technique helped improve the damaged cartilage surface 

compared to the control samples and generated a significantly greater proportion of type 11 

collagen. One other publication by this group involved the effects of exercise on the repair of 

articular cartilage defects [93]. They documented that postoperative exercise was beneficial 

to the development of cartilaginous repair tissue in large defects in equine joints. Pahner et 

al. [94], at Ohio State University, reported on the biomechanical properties of articular 

cartilage in exercised and nonexercised horses. They found that at given sites (joint surfaces) 

exercise increased the permeability constant and Poisson's ratio, but did not affect tiie 

aggregate modulus. They recommended that further studies be conducted involving exercise 

to better characterize its effects. 
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New therapies have been introduced recently that have been shown to impede 

degradation of articular cartilage. In "The Arthritis Cure", Theodosakis et al. [2] described 

how orally ingesting glucosamine and chondroitin sulfates helps the body to repair damaged 

or eroded tissue. They claimed that by supplying the body with these proteoglycan 

components, damaged tissue will not continue to lose these water-retaining components as 

they typically do during normal degeneration. At Genzyme Tissue Repair, researchers have 

developed a new product called Carticel. By using a method developed by Brittberg et al. 

[3], Genzyme created an injectable matrix-rich solution which is placed under a periosteal 

flap to regenerate small defects in articular cartilage. These techniques have been shown to 

be quite effective for arresting early cartilage degradation, but may prove to be ineffective for 

the repair of larger defects. 

Over the past few years, researchers have experimented with new types of equipment 

to quantitatively and qualitatively assess articular cartilage. Guilak and Mow [95] used 

confocal microscopy to detect three-dimensional changes in cell shape and volume while the 

matrix was loaded by compression. Using a finite element model they were able to describe 

the mechanical effects on cellular elastic properties, cell shape, intercellular spacing and the 

presence of the pericellular matrix in vitro. Many nondestructive forms of analysis in vivo 

have also been described. Steele et al. [96] used magnetic resonance imaging (MRI) to 

develop a three-dimensional representation of the tibiofemoral (knee) joint. In the following 

years Marshall et al. [97] and Eckstein et al. [98,99] both used MRI to quantify articular 

cartilage thickness. These studies accurately and reproducibly measured articular cartilage 

volume and they provided the means to noninvasively assess changes in volume normally 
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resulting in the early stages of osteoarthritis. Cohen et al. [100] further described using MRI 

to obtain 3-D surface topographies, thicknesses, and contact areas of articular cartilage which 

they validated using stereophotogrammetry. At the University of California, Santa Barbara, 

Petersen et al. [101] have developed a hollow fiber chondrocyte bioreactor which is 

compatible with nuclear magnetic resonance (NMR) to allow noninvasive study of 

neocartilage formation. Initial results with this system indicate that, after a one month 

growth period, the NMR properties of the cultured neocartilage were found to correlate well 

with known histological data. Chiang et al. [102] recently described the use of a ultrasonic 

technique to better detect the surface fibrillations which are characteristic of osteoarthritic 

cartilage. After validating this new technique with laser-based confocal microscopic 

imaging, Chiang et al. claimed that ultrasonic assessment allows better resolution than 

current MRI methods. Another technique currently being investigated to reconstruct three-

dimensional representation of articular cartilage is ultrasound microscopy (UM). 

Harasiewicz et al. [103] and Saied et al. [104] both described using this technique as a means 

for early detection of osteoarthritic changes within articular cartilage. UM allows the user to 

obtain information about the articular cartilage surface, subsurface structures and overall 

thickness. Other microscopic techniques have also been developed in recent years to better 

characterize articular cartilage. Jurvelin et al. [105] have developed an optical method which 

allows a direct determination of Poisson's ratio of tissue at equilibrium. Also, the aggregate 

modulus, Hj, and Young's modulus were determined using the equilibrium behavior of 

cartilage disks in unconfined and confined ramp-stress relaxation tests. Another technique 

recently developed to determine cartilage surface profiles and tissue thickness is multi-station 
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digital photogrammetry (DPG) and thin-plate spline surface interpolation (TPS). Ronsky et 

al. [106] and Boyd et al. [107] have used these techniques to better visualize joint anatomy 

and develop an excellent mathematical model of the joint surface. At MIT, Berkenblit et al. 

[108] have developed an electrokinetic surface probe which applies currents to the surface of 

articular cartilage and measures the resulting stress. This technique gives yet another option 

for detecting degradative changes in articular cartilage by non-destructively assessing its 

material properties. These new techniques should allow researchers to further characterize 

articular cartilage and increase our understanding of how this tissue functions and reacts to 

changes in its environment. 

In order to better understand how mechanical forces normally influence development 

and maintenance of articular cartilage in vivo, researchers have continued to investigate 

systems implementing many different loading conditions. In a recent study, Lee and Bader 

[109] applied physiological loads to chondrocytes seeded in agarose. They found that static 

strains inhibited the synthesis of glycosaminoglycans while dynamic strains stimulated their 

synthesis, confirming that chondrocytes regenerate their extracellular matrix when loaded in 

a manner similar to that found in vivo. Shepherd and Seedhom [110] applied physiological 

loading rates to articular cartilage in order to better characterize the tissue mechanically. 

Using human knee joints, they found that the compressive modulus of articular cartilage was 

much greater than previously reported. At 20 milliseconds, the modulus was found to be 

between 4.4-27 MPa, a value 32 to 75% greater than its value obtained at 2 seconds. Using 

unconfined compressive loading, Suh and DiSilvestro [111] were able to better describe the 

biphasic poroviscoelastic behavior of articular cartilage. They noted a considerable 
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discrepancy in the stress relaxation response between the biphasic model prediction and the 

actual tissue behavior, allowing them to better describe the physical characteristics of 

cartilage behavior after pressure release. Suh et al. [112] went on to determine the effects of 

negative intermittent pressures on chondrocyte biosynthesis. They found that negative 

pressure increased the synthesis of proteoglycan and non-collagenous protein synthesis by 40 

and 17%, respectively, demonstrating that chondrocyte biosynthesis has a similar response to 

positive and negative loading. 

Physical deformation studies involving cartilage explants have helped characterize the 

metabolic response of chondrocytes to compressive loading. Torzilli et al. [113] have 

developed a mechanical explant system which is capable of loading cartilage from 0.5 to 24 

MPa. Using this system, they found that statically and dynamically applied compressive 

stress decreased proteoglycan biosynthesis at all loading time intervals. Their results 

indicated that the cyclically loaded explants may have been dominated by the static 

component of the dynamic load. Wong et al. [114] used static compression to investigate 

cellular responses at different depth-zones, from the articular surface to the cartilage/bone 

border. Cell biosynthesis was found to vary at different levels within the tissue depending on 

the axial strain created by the applied strain. Buschmann et al. described the effects of 

compressive loads on biosynthetic activity of chondrocytes cultured in agarose disks [115] 

and aggregan synthesis in explant cultures [116]. These two studies showed that dynamic 

compression is most effective when chondrocytes retain their three-dimensional 

characteristics and that compression may stimulate an intracellular signal transduction 

pathway to which chondrocytes respond. In recent years, researchers have been trying to 
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better understand how chondrocytes sense pressure. One hypothesis is that 

mechanoreceptors stimulate the stress activated protein kinase pathway which causes an 

increase in matrix production. Wright et al. [117] described how aSpi integrin plays an 

important role as a chondrocyte mechanoreceptor. Using pharmacological inhibitors, they 

have demonstrated that both tyrosine protein kinase and protein kinase C activities are 

important in the transduction of the electrophysiological response to mechanical stimuli. 

This study was the first step in explaining how chondrocytes sense pressure and, as the years 

progress, chondrocyte signaling characteristics will undoubtedly continue to be revealed. 
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CHAPTER 2. A SEMI-CONTINUOUS PERFUSION SYSTEM FOR 
DELIVERING INTERMITTENT PHYSIOLOGICAL PRESSURE TO 

REGENERATING CARTILAGE 

A paper accepted by Tissue Engineering 

Scott E. Carver and Carole A. Heath 

Abstract 

A semi-continuous compression/perfusion system has been custom made to allow the 

application of intermittent hydrostatic pressure, at physiological levels, to regenerating 

tissues over the long term. To test the system, isolated foal chondrocytes were seeded in 

resorbable polyglycolic acid meshes and cultured in the system for five weeks. The 

cell/polymer constructs were subjected to an intermittent hydrostatic pressure of 500 psi and 

were fed semi-continuously. Assays of the resulting tissue constructs indicate that the reactor 

supports cartilage development and that physiological intermittent compression enhances the 

production of extracellular matrix by the chondrocytes. The concentrations of sulfated 

glycosaminoglycan were found to be at least twice as high as those in control (unpressurized) 

samples. A correlation between the sulfated glycosaminoglycan content and the compressive 

modulus in pressurized, but not control, samples suggests that physiological intermittent 

pressurization not only enhances the production of extracellular matrix but may also 

influence matrix organization resulting in a stronger construct. 
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Introduction 

Articular cartilage, which covers the ends of all synovial joints, is composed of 

chondrocytes, proteoglycans, collagen (primarily type 11), and water. Sulfated 

glycosaminoglycans (GAG), localized within the collagen network, keep the tissue hydrated 

and resistant to compression, while cross-linked collagen fibrils provide resistance to shear 

and tension. The large water content gives cartilage the ability to distribute loads throughout 

the highly porous matrix and over the joint surface. During normal daily fimction, articular 

cartilage can be repeatedly subjected to forces up to several times body weight. 

Articular cartilage, despite its tremendously important fimction of providing 

articulating joints with a nearly fiictionless, weight-distributing surface for the transference 

of forces between bones and joints, has a very limited ability to repair itself with 

biomechanically fiinctional tissue.''" One particularly promising solution is to develop 

fionctional replacement cartilage in vitro that can be implanted in vivo. Although progress 

has been made in estabUshing tissue which is biochemically similar to native cartilage, the 

specific conditions of mechanical force believed to be responsible for development of the 

native material structure have not yet been determined. Knowledge of these conditions is 

crucial to the development of fimctional replacement tissue (i.e., with the ability to bear and 

distribute weight). 

The phenotypic nature of the chondrocyte is a direct result of its growth environment. 

Without a three-dimensional support structure in vitro, the chondrocyte will dedifferentiate 

into a fibroblast-like cell and begin producing fibrous, rather than articular or weight-bearing. 
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tissue.^'^ Mechanical stresses are also important to chondrocyte flmction: the repair of 

damaged cartilage in situ is improved in moving, rather than immobilized, joints.®'' Cultured 

chondrocytes react favorably to intermittent compression over periods less than 48 hours by 

increasing production of extracellular matrix.®"'" Exposure of regenerating tissue to fluid 

flow enhances cartilage development in vitro by increasing mass transfer of nutrients to and 

within the cell-polymer composite.""'"' As a result of these and other observations, 

mechanical forces are believed to direct the differentiation of this matrix into the structure 

responsible for the load-bearing ability of cartilage.'^ 

The compression/perfiision system was designed to examine the relationship beUveen 

physiological levels of intermittent pressure and cartilage matrix formation. Unlike the static 

reactors used in past studies, the newly developed culture system, because of its capacity for 

medium perfusion, allows long-term study of the effects of compression on cartilage 

formation. Experiments to measure the uptake rates of glucose and oxygen by chondrocytes, 

as well as to examine the effects of different buffering systems on cell growth, were done to 

determine the operating conditions of the system. A five-week study of cartilage 

regeneration with intermittent pressurization at 500 psi demonstrates the effectiveness of the 

compression/perfusion system and the impact of intermittent pressure on extracellular matrix 

formation. 
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Materials and Methods 

Chondrocyte Isolation 

Cartilage was harvested from the stifle joints of a one week old foal (College of 

Veterinary Medicine, Iowa State University, Ames, LA). Chondrocytes were isolated from the 

tissue with type II collagenase (Worthington, Freedhold, NJ) as previously described.'® The 

culture medium used for all experiments was Dulbecco's Modified Eagle's Medium (Gibco) 

supplemented with 10% fetal bovine serum (Gibco), antibiotics (10,000 U/ml penicillin and 

10 mg/ml streptomycin), 10 mM HEPES, and 50 mg/mL ascorbic acid (from Sigma unless 

indicated otherwise). The cells were counted with a hemacytometer using the viability stain 

trypan blue and transferred to tissue culttire flasks at a concentration of 1x10^ cells/ml. 

Polymer Matrix 

A nonwoven mesh of polyglycolic acid (PGA) served as the support structure for the 

cells. The PGA, supplied in square pads of 1 cm x 1 cm x 5 mm thick (Albany International, 

Mansfield, MA), has a bulk density of 44 mg/cm^ and a porosity of 97%. 

Glucose and Oxygen Consumption Rates 

To determine an appropriate medium feeding strategy for the perfusion system, the 

consumption rates of oxygen and glucose were measured during the non-growth phase of 

chondrocyte culture at which most of the regeneration would be occurring. Pads of PGA (10 

X 10 X 1.5 mm) were placed individually into cylindrical glass vials (20 mm i.d., 25.4 mm 

height) and seeded with chondrocytes (3.2 x 10^ cells/pad and 2 ml medium). Each vial was 

capped with a rubber stopper containing an air vent (0.2 mm Aero 37 TF disposable PTFE) to 
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allow oxygen supply to the cells. Half of the medium in each vial was replaced every 2 to 3 

days. 

Between six and nine weeks of culture, glucose and oxygen concentrations and the 

cell density were determined for each vial, with one or two vials harvested every few days. 

Glucose concentrations in the culture fluid samples were determined by the Trinder assay 

(Sigma). Prior to determining the oxygen consumption rate, each vial was filled completely 

with culture medium (no gas headspace) and sealed with a stopper containing a 

microelectrode (Microelectrodes, Bedford, NH) which was connected to an amplifier and a 

volt meter. The oxygen microelectrode was calibrated immediately prior to use with air-

saturated and oxygen-depleted (by N, sparge) water at 37°C. The viable cell density was 

determined using the CellTiter 96 assay (Promega, Madison, WI). 

The specific oxygen and glucose uptake rates were calculated as follows: 

OUR = — 
1 

X \ At y 

where OUR and GUR are the oxygen and glucose uptake rates (mol/cell-hr), X is the cell 

density (cells/ml), C is concentration (mol/ml), and t is time (hr). 
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Chondrocyte Culture in the Presence of CO2 and HEPES Buffer 

Eight 25 cm" tissue culture flasks were each seeded with 7.5 x 10^ cells in 5 ml of 

medium with two flasks for each of four experimental groups: 10 mM HEPES buffer, no 

CO2; 10 mM HEPES, 5% CO,; no HEPES, 5% CO,; no HEPES, no CO,. All flasks were 

maintained in a 37°C CO, (5%) incubator; the caps were cracked open on flasks exposed to 

CO2 and tightly sealed on flasks deprived of CO,. Every three or four days, 90% of the 

medium was replaced. All flasks were opened for three minutes daily in a biohood to 

replenish the oxygen in the gas phase. The cells in each flask were released by trypsinization 

and counted using trypan blue after four and eleven days. After the second count, cells from 

the duplicate flasks of each experimental group were combined and then divided between two 

new flasks at a density of 7.65 x 10' cells/flask to ensure adequate time for adaptation to the 

culture conditions which were die same as described above. The cells were counted eight 

days later (day 20). 

Compression/Perfusion System 

A semi-continuous compression/perflision system was specially designed and 

constructed to allow intermittent pressurization of developing cartilage constructs over long 

term durations (Fig. 1). Twelve 316 stainless steel reaction vessels (Fig. 2) are located within 

the uicubation chamber maintained at 37±1°C with a temperature controller (Omega) and a 

convective heater (Chromalox). Filtered house air flows through a pressure regulator 

(McMaster Carr Supply, Chicago, EL) and a series of Mac solenoid valves (Mid State 

Distributors, Des Moines, lA) which are electronically controlled with a programmable 

computer timer (Chrontrol, San Diego, CA). After being purged of air, each vessel is 
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Figure 1. Diagram of the custom made compression/perfusion system for applying 
intermittent pressures to regenerating cartilage constructs. 
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Figure 2. Expanded view of a compression/perfusion vessel and the inner support cage on 
which the cell-polymer constructs are cultivated for weeks to months (not drawn to scale). 
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pressurized by a piston, sealed with two high pressure o-rings, when air is directed to an air 

cylinder (Grainger, Des Moines, lA) located above each reactor. The pressure is released 

when the air in each air cylinder is vented to the atmosphere. The computer timer is 

progranmied to control the duration and frequency at which each reactor is pressurized and 

depressurized. 

The challenge in designing this system for long-term use was to permit medium 

perfusion in addition to providing intermittent pressure on a continuing basis, while 

minimizing the risk of contamination. To accomplish these objectives, air-actuated valves, 

designed to withstand pressures up to 3000 psi, were placed on opposite sides of each reactor. 

When the reactors are unpressurized and the actuator valves are opened, the timer activates a 

low flow multi-channel pump (Watson-Marlow) which circulates medium through each 

reactor and an extemal reservoir. 

Each reactor (10 ml), which holds a cage supporting three cell-polymer composites, is 

attached to its own medium recirculation bottle. The bottle caps are fitted with five ports 

with the following functions: gas transfer with a 0.22 f^m air filter (Gelman); recirculated 

medium inlet and outlet; fresh medium inlet; and spent medium outlet. Spent medium is bled 

from the recirculation bottles with a multi-channel pump (Masterflex) to a mediiun waste 

reservoir. Fresh medium is then pumped into the vessels via another multi-channel pump 

(Masterflex). 

Cartilage Regeneration 

After expansion in tissue culture flasks (three passages), the chondrocytes were 

collected by trypsinization, counted, and dynamically seeded onto the polymer pads.'"* 
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Dynamic cell seeding results in nearly quantitative entrapment and adherence of cells in the 

polymer pads as determined by the lack of any cells in the suspension or on the walls of the 

vessel post seeding. Before cell seeding, the polymer pads were Hghtly glued with Loctite 

Medical Adhesive (Loctite Corp.) to the three levels of each of the support cages and allowed 

to dry overnight. The support cages and the attached polymer pads were sterilized with 

ethylene oxide, followed by four washes in culture medium over a 48-hour period to remove 

residual ethylene oxide. Three support cages were hung from the caps of each of four 125 ml 

spinner flasks. Each flask contained 5x10^ cells suspended in 125 ml culture medium, 

resulting in approximately 5x10^ cells/pad. After 48 hours of slow stirring (50 rpm), the 

cages were removed from the spinner flasks and placed in the reaction vessels. The vessels 

were carefully filled with culture medium to minimize disturbance of the cell/polymer 

constructs. The vessels were sealed and additional medium was pumped into the vessels to 

remove trapped air. The feeding and pressurization regime was then initiated. 

The contents of six reactors (the other six were nonpressurized controls) were 

pressurized intermittently (5 seconds pressurized at 500 psi and 15 seconds depressurized) for 

20 minutes every four hours for 5 weeks. Prior to each pressurization, 20 ml of medium was 

perfused through each reactor from its recirculation vessel over a period of three minutes. 

Evaluation of Regenerated Tissue 

The regenerated tissue matrix formed by the chondrocytes was examined after three, 

four and five weeks of culture in the perfusion system. Two pressurized and two control 

reactors, each containing three cell constructs, were harvested each week. The three pads 

from each reactor were divided for analysis as follows; one half pad each for the cell, GAG 
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and collagen assays, one half pad for dynamic mechanical analysis, and one pad for 

microscopy. Native foal tissue was also assayed by the same techniques. 

The number of chondrocytes per sample was determined indirectly by measuring the 

amount of DNA in papain digests fluorometrically using the dye Hoechst 33258 and 

comparing the results to a standard curve." 

A modified version of the 1,9-dimethyl-methylene blue method" was used to 

quantitate the amount of GAG in the regenerated tissue. Tissue samples were desiccated, 

weighed, and digested for three hours to eliminate interfering proteins. The digestion was 

stopped with iodacetic acid. One ml of dimethylene blue, a strong metachromatic dye, was 

added to 50 ^1 of the digestate, mixed, and the absorbance read at 525 nm. Chondroitin 

sulphate b from bovine mucosa (Sigma) was used as the standard. 

The compressive modulus, which is a measure of the stiffiiess or strength of the 

material, was determined from stress versus strain data obtained with a Dynamic Mechanical 

Analyzer (DMA-7, Perkin-Ehner) equipped with a parallel plate sample holder. The 

compressive modulus was determined as the slope at 1% strain. 

Total collagen concentration was determined from the hydroxyproline content after 

acid hydrolysis of the sample followed by reaction with chloramine-T and p-

dimethylaminobenzaldehyde." 

Data are presented as means ± pooled standard deviations for samples analyzed 

within a given week. Significant differences were determined using the Student's t test; in 

Fig. 4, an asterisk indicates p<0.05. 
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Results 

Rates of Oxygen and Glucose Consumption by Chondrocytes 

The specific glucose and oxygen uptake rates over the range of time tested (40 - 65 

days post seeding) were relatively constant with mean values (± standard deviation) of 2.14 x 

10"'^ (± 0.62 X 10"'^) and 2.05 x 10"''' (± 0.44 x lO"''') mol/cell-hr, respectively. At an average 

density of 2 x 10' to 3 x 10' cells/pad and three pads per vessel, and assuming medium 

saturated with atmospheric oxygen, a minimum flow rate of approximately 5 ml/hr is 

required to supply adequate oxygen to each vessel. Because the timer was set to recirculate 

medium after each pressurization cycle over a three-minute period as previously described, 

20 ml were supplied to the reactor once every foiu" hours. 

Chondrocyte Culture in the Presence of CO2 and HEPES Buffer 

While all four groups showed no change or a drop in cell density after four days, 

flasks deprived of CO2 (with or without HEPES) showed the greatest increases (average 

increase of 100%) in cell density by day eleven. Cultures exposed to gas containing 5% CO, 

exhibited essentially no change in cell density at eleven days. After twenty days, however, 

cells under all four sets of conditions showed significant increases in cell number (firom 0.8 x 

10® cells/ml to an average of 6.5 x 10® cells/ml), with the lowest increase found in the flasks 

with neither HEPES nor CO, (5.3 x 10® cells/ml). These results demonstrate that neither CO2 

nor HEPES buffering is necessary for chondrocyte growth as long as cells are allowed to 

adapt to the culture conditions. 
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Cell Concentrations in Tissue Constructs 

Intermittent pressurization had little effect on cell density in the tissue constructs as 

both pressurized and non-pressurized samples showed similar pattems of growth. Cell 

concentrations increased in both the pressurized and control samples from weeks 3 through 5 

(Fig. 3). While similar to the control at weeks 3 and 4, the cell density in the pressurized 

constructs was lower than the control at week 5 perhaps as a result of dilution by the 

increasing amount of extracellular matrix and/or because cells experiencing pressure have 

been shown to slow their growth.'''" At 5 weeks, the control sample actually exceeded the 

cell density found in native foal cartilage from the stifle joint (4 x 10' to 6 x 10' cells/g 

tissue). 

GAG Concentrations 

Pressurization had a significant impact on the production of GAG in the tissue 

constructs (Fig. 4). The concentrations of GAG in the pressurized samples increased steadily 

from week 3 to week 5 and were consistently greater than those in control samples. With 

native foal GAG levels of 40 to 120 mg/g tissue, the pressurized samples exhibited native 

levels at 4 and 5 weeks. The GAG concentration in the control constructs only reached the 

low end of the native range at week 4, followed by a significant drop in concentration the 

following week. 

Compressive Modulus versus GAG 

The concentration of GAG and the compressive modulus were positively correlated in 

the pressurized (but not control) samples (Fig. 5). While multiple measures of the GAG 
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Figure 3. Cell concentrations in regenerated foal tissue with and without intermittent 
presstire at 500 psi. Native cell density in foal tissue is 4 x 10^ to 6 x 10^ cells/g wet tissue. 
Results are means ± pooled SD; the cell densities did not differ significantly between 
pressurized and control samples at each week. 
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Figure 4. GAG concentrations in regenerated foal tissue with and without intermittent 
pressure at 500 psi. Native GAG concentration in foal tissue is 40 to 120 mg/g dry tissue. 
Results are means ± pooled SD; the asterisks indicate p < 0.05. 
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Figure 5. The compressive modulus, a measure of the construct strength, increases linearly 
with GAG concentration in tissue constructs subjected for 3,4, and 5 weeks to intermittent 
compression at 500 psi. 

content were made, the size of the sample required and the destructive nature of the 

compressive modulus assay allowed only a single measurement at each week. Subsequent 

experiments have confirmed a positive correlation between compressive modulus and the 

GAG content of regenerated constructs in pressurized samples (unpublished results). 

Because this correlation was only observed in pressurized samples, intermittent 

pressurization may be affecting not only the tissue composition but also its structure in some 

unknown manner. Even with native levels of GAG, however, the pressurized constructs 

yielded a modulus less than that of native tissue (0.15 - 0.30 MPa)."° 
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Collagen Concentrations 

In contrast to the GAG concentrations, pressurization did not increase the production 

of collagen in the tissue constructs (Fig. 6). While neither regimen resulted in native foal 

levels of collagen (100 - 150 mg/g tissue), both pressurized and control sample 

concentrations increased with time and may have eventually reached native collagen levels if 

cultured for a longer duration. 
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Figure 6. Collagen concentrations in regenerated foal tissue with and without intermittent 
pressure at 500 psi. Native collagen concentration in foal tissue is 100 to 150 mg/g wet 
tissue. Results are means ± pooled SD; the collagen concentrations did not differ 
significantly between pressurized and control samples at each week. 
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Discussion 

The effects of mechanical loading on the synthesis of extracellular matrix components 

in both isolated chondrocytes and cartilage explants has been explored but in most, if not all, 

cases only for time periods of 48 hours or less. Short term experiments show that, while 

static pressurization suppresses production,"' intermittent compression stimulates 

chondrocytes to increase synthesis of proteoglycans.'" Unless or until the pressure exceeds 

physiological pressures, increasing the level of intermittent compression causes an increase in 

the rate of proteoglycan synthesis." 

The newly-developed compression/perflision system was designed for long-term 

study of the effects of intermittent pressurization on cartilage development in vitro. One of 

the concerns in designing the system was how to best simulate the types and levels of forces 

experienced by chondrocytes during joint motion in situ. Joint motion consists of various 

mechanical stresses on an intermittent (but not necessarily regular) basis, with the primary 

loading mode in articular joints being compression. When a joint is loaded and unloaded, 

flow of synovial fluid past and through the tissue occurs and is responsible for load 

distribution, lubrication, and nutrient transport."^ While fluid flow is necessary to the 

operation of the compression/perfusion system, tissue deformation, as experienced during 

actual joint motion, is not allowed. Compression involving deformation of regenerating 

tissue, especially before the extracellular matrix is fiilly formed, is likely to damage the 

porous polymer support structure and/or the cells and their extracellular matrix. Systems 

applying direct compressive loads and those utilizing hydrostatic pressure, however, are both 

valid means of studying the biological response of cartilage to mechanical stimuli." The 
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choice of which to use depends on the type of questions being asked. While physical 

deformation may be an appropriate means of stressing explants or fully formed tissue, 

hydrostatic pressure is probably the best (or only) means of safely exposing regenerating 

tissue, particularly at the early stages of development, to compressive forces. 

Hydrostatic pressurization also appears to be a more effective inducer of extracellular 

matrix formation in cartilage explants compared to physical compression. Matrix production 

in canine explants subjected to physically applied loads ranging from 0.5 to 1.2 MPa for up 

to 18 hours was inhibited by static compression and showed no net effect in intermittently 

compressed cultures."^ Proteoglycan synthesis in bovine explants was enhanced, however, 

when subjected to hydrostatic pressures at physiological levels.'® Within the hydrostatic 

pressure range of 2.5 to 50 MPa, matrix production was stimulated from 3.0 to ~18.0 MPa; 

however, as the pressiu^e level exceeded 18.0 MPa, the rate at which proteoglycans were 

synthesized steadily decreased. The effects of applying hydrostatic pressure, both positive"^ 

and negative,"^ showed that cyclic hydrostatic pressures significantly influenced the 

production of extracellular matrix in explants. Newly formed proteoglycans in physically 

compressed explants, however, were not completely retained within the extracellular 

matrix."' 

Because the metabolism of developing cartilage has not been very thoroughly 

explored, it was necessary to measure the glucose and oxygen consimaption rates before 

operating the system. While the measiu-ed glucose consimiption rate (2.5 x lO''"* mol/cell-hr) 

is similar to that seen in other non-proliferating mammalian cells, the oxygen consumption 

rate (2.14 x 10"'^ mol/cell-hr) is on the low end of the normal range, probably because 
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chondrocytes exist in an avascular tissue and possess a metabolism suited to low oxygen 

environments. How oxygen influences chondrocyte metabolism is not clearly understood, 

but articular cartilage does tolerate a fairly broad range of dissolved oxygen concentrations."® 

The optimum dissolved oxygen tension for cartilage regeneration, however, is not 

immediately clear. Whereas maximum cartilage growth and GAG synthesis occur at 21% 

oxygen, maximum proteoglycan aggregation occurs at 3% oxygen.^" The effects of different 

levels of dissolved oxygen on cell metabolism exemplify the importance of a liquid-filled 

system at physiological pressures. Gas compression will result in increased levels of 

dissolved gases in the culture medium; as the applied pressure is increased, levels of 

dissolved gases become higher than physiological and may even become toxic. Further study 

is needed to determine the effects of different oxygen concentrations on cartilage 

development (and repair). 

Also investigated was whether cartilage development would be affected by the 

presence or absence of dissolved carbon dioxide which is frequently used as a buffering agent 

with cell cultures. Because operation of a high pressure culture system is simpler without the 

need for CO, control, experiments were done to determine whether chondrocyte growth 

would be diminished in the absence of CO,. Cells were grown with and without both CO, 

and HEPES (N-[2-hydroxyethyl]pipera2ine-N'-[2-ethanesulfonic acid]), an alternative 

buffering agent frequently used in addition to or instead of CO,. As long as the cells were 

given sufficient time (two to three weeks) to adapt to the new culture conditions, the absence 

of CO, and HEPES had little effect on cell growth. The effect of CO, and HEPES on matrix 
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formation was not studied. HEPES was added to the culture medium in the present study to 

avoid the adaptation period, in which cell growth is slowed. 

Intermittent pressurization resulted in more matrix formation than in the 

nonpressurized samples. While collagen concentrations generated in the 

compression/perflision system were unaffected, GAG concentrations were much higher in the 

pressurized compared to control samples and were within the range of concentrations 

normally found in native foal cartilage from the stifle joint. GAG concentration was also 

correlated with the compressive modulus in the pressurized, but not control, samples 

suggesting that pressurization may also affect the tissue structure, perhaps by increasing 

GAG aggregation, resulting in a more organized matrix. Cell concentrations were at or near 

the range normally found in foal tissue but collagen concentrations were 20 to 25 times lower 

than native, as typically has been the case with all cartilage constructs regenerated over a 

five-week period.^' 

The compression/perflision reactor was designed to support investigations of the 

effects of compression and fluid flow, simultaneously or separately, on the development, 

maintenance, and possibly degeneration of cartilaginous tissue for indefinite periods of time. 

Experiments to determine the effects of fluid flow and of pressure level, duration and 

frequency on cartilage regeneration are in progress and will be the focus of subsequent 

publications. 
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CHAPTER 3. INCREASING EXTRACELLULAR MATRIX 
PRODUCTION IN REGENERATING CARTILAGE WITH 

INTERMITTENT PHYSIOLOGICAL PRESSURE 

A paper accepted by Biotechnology and Bioengineering 

Scott E. Carver and Carole A. Heath 

Abstract 

Isolated equine chondrocytes, from juveniles and adults, were cultured in resorbable 

polyglycolic acid meshes for up to five weeks with semi-continuous feeding using a custom-

made system to intermittently compress the regenerating tissue. Assays of the tissue 

constructs indicate that intermittent compression at 500 and 1000 psi (3.44 and 6.87 MPa, 

respectively) stimulated the production of extracellular matrix, enhancing the rate of de novo 

chondrogenesis. Constructs derived from juvenile cells contained concentrations of 

extracellular matrix components at levels more like that of native tissue than did constructs 

derived from adult cells. With intermittent pressurization, however, even adult cells were 

induced to increase the production of extracellular matrix. At both levels of intermittent 

pressure, the concentration of sulfated glycosaminoglycan in constructs from juvenile cells 

was found to be up to ten times greater than concentrations in control (nonpressurized) and 

adult cell-derived constructs. While collagen concentrations in the 500 psi and control 

constructs were not significantly different for either juvenile or adult cell-derived constructs. 
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intermittent pressurization at 1000 psi enhanced the production of collagen, suggesting that 

there may be a minimum level of pressure necessary to stimulate collagen formation. 

Key words: articular, cartilage, chondrocytes, regeneration, tissue 

Introduction 

Tissue engineering, or the development of tissues from harvested cells attached to or 

within a resorbable support matrix, is a relatively new strategy for the repair or replacement 

of damaged tissues. Transplantation of one such tissue construct, i.e., bioartificial skin, has 

already proven to be a successful approach for the treatment of bums and bedsores (Bell et 

al., 1981; Yannas et al., 1982). Another imminent application of this technology is the repair 

and replacement of osteoarthritic, or otherwise damaged, articular cartilage. 

Articular cartilage covers the ends of all synovial joints with a one-half to five 

millimeters thick organized tissue and provides articulating joints with a durable, weight-

distributing surface. Cartilage has well characterized histological, biochemical, and 

biomechanical properties, and is composed of chondrocytes, proteoglycans, collagen 

(primarily type n and smaller amounts of types IX and XI), and water (Mow et al., 1992). 

Large, highly charged, aggregating proteoglycans, locahzed within the collagen network, 

keep the tissue hydrated and resistant to compression, while cross-linked collagen fibrils give 

the tissue its ability to resist shear and tension. The composition and structural arrangement 

of these components give cartilage its mechanical properties. During normal daily function. 
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articular cartilage can be repeatedly subjected to forces ranging from zero at rest to several 

times body weight during dynamic loading (Macirowski et al., 1994). 

Unlike many other tissues, cartilage is avascular, aneural, and alymphatic. While the 

exact mechanisms are not yet known, changes in phenotypic expression occur by 

transduction of mechanical signals into metabolic events and structural adaptations (Salter et 

al., 1980; Sah et al., 1991; Suh et al., 1995). In vivo studies have shown that immobilization 

of a joint results in degenerative changes characterized mainly by the loss of proteoglycan 

production (van Kampen and van de Stadt, 1987). Conversely, the in vivo application of 

mechanical force can influence the metabolic response of joint cartilage (Caterson and 

Lowther, 1978; Helminen et al., 1992; Kiviranta et al., 1988) and can actually improve 

cartilage repair following induced injury (Todhunter et al., 1993). 

Most prior experiments to study the relationship between mechanical forces and 

cartilage development, except those of Hall et al. (1991) and Buschmann et al. (1995), were 

done at pressures less than physiological and/or for very short time periods. Our previous 

work overcame the limitation of short term experiments but the studies were still conducted 

at pressures lower than realized in vivo (Heath and Magari, 1996). Even at low pressures, 

however, intermittent compression resulted in the development of a quahtatively stronger 

matrix compared to unpressurized constructs. In the present work we report on the effects of 

physiological levels of intermittent compression on cartilage development over the long term, 

in ways not previously possible, using an intermittent pressiu-e cell culture system with 

medium perfusion designed to mimic key aspects of the in vivo articular environment (Carver 

and Heath, 1998). The horse served as the model system for these experiments both because 
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of the intrinsic merit of and need for cartilage repair in horses and because the compositions 

of equine and human articular cartilage are similar (Vachon et al., 1990). 

Materials and Methods 

Chondrocyte Isolation 

Cartilage was harvested from the stifle joints of healthy juvenile, no older than 24 

months (earliest age at which the epiphyseal plate closes in the distal femur of horses 

(Campbell, 1977)), and adult horses (College of Veterinary Medicine, Iowa State University, 

Ames, lA). Chondrocytes were isolated from the tissue with type II collagenase 

(Worthington, Freedhold, NJ) as described previously (Klagsbrun, 1979). The culture 

medium used for all experiments was Dulbecco's Modified Eagle's Medium (Gibco, Grand 

Island, NY) supplemented with 10% fetal bovine serum (Gibco), antibiotics (10,000 U/ml 

penicillin and 10 mg/ml streptomycin, Gibco), 10 mM HEPES (Sigma Chemical, St. Louis, 

MO), and 50 i^g/mL ascorbic acid (Sigma). The cells were counted with a hemacytometer 

using the viability stain Trypan Blue (Sigma) and cultured in flasks (Coming, Coming, NY) 

at a concentration of 1x10^ cells/ml. 

Compression/Perfusion System 

To conduct these studies, we designed and constructed a semi-continuous perfusion 

system capable of administering intermittent compression to cartilage constructs (Carver and 

Heath, 1998). Briefly, house air enters a pressure regulator and is adjusted to the appropriate 

pressure (up to 80 psi). A three-way solenoid valve, located between the pressure regulator 

and the air manifold, distributes pressurized air to each of the air cylinders (one per culture 
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vessel). By switching the solenoid valve, air is either forced into or out of the manifold and 

the pistons used to pressurize the twelve culture chambers. Since the diameter of each air 

cylinder is five times that of each chamber piston, the pressure in each culture vessel is 25 

times the regulated pressure, allowing pressurization of the reactors (containing the cell-

polymer composites) up to 2000 psi (~I3.5 MPa), which is near the high end of pressures 

normally experienced by the human hip (Macirowski et al., 1994). Normal, daily contact 

stresses on human joints range from 3 to 10 MPa (Mow et al., 1992). The actual pressure in 

the reaction vessels was verified, and found to be close to the calculated pressure, by 

attaching a pressure gauge to the medium inlet port (to which an air-actuated valve is 

normally attached as described below) in the vessel. 

Air pressure was also used to open and close actuated valves (Omaha Valve and 

Fitting; Omaha, NE) located on opposite sides of each reactor to allow medium perfusion. 

When the intermittent pressure was off and thus the pressure in the chambers was 

approximately atmospheric, the valves were open. Medium was then pumped into and out of 

the reactors via a twelve channel pump (Lab Research Products; Lincoln, NE) firom extemal 

reservoirs. The reactors were housed inside an incubation chamber which was maintained at 

37°C. Inside each reactor was a three-tiered support cage to which three polymer pads were 

adhered. 

The vessels were kept completely filled with culture medium for the duration of each 

experiment. Gas compression would have resulted in an unreasonably large deflection of the 

piston to achieve pressurization and a high, potentially toxic, dissolved oxygen concentration 
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in the culture medium. As a result of the very low compressibility of culture medium, the 

piston moved very little during the compression. 

Polymer Preparation 

The PGA nonwoven mesh (97% void volume, 13 |im diameter fibers) was supplied in 

square pads of 1 cm x 1 cm x 5 mm thick (Albany International, Mansfield, MA). According 

to the manufacturer, the PGA is completely resorbed over a period of 120 days and loses its 

strength by about 30 to 40 days in vitro. Before cell seeding, the polymer pads were lightly 

glued with Loctite Medical Adhesive (Loctite Corp.) to the three levels of each support cage 

and allowed to dry overnight. The support cages and the attached polymer pads were 

sterilized with ethylene oxide (EtO), followed by four washes in culture medium over a 48-

hour period to remove residual EtO and to test for sterility. 

Cartilage Regeneration 

After expansion in tissue culture flasks (approximately three passages), the 

chondrocytes were collected by trypsinization, counted, and dynamically seeded into PGA 

pads at a density of 5 x 10® to 7.5 x 10® cells/pad as previously described (Carver and Heath, 

1998). Dynamic cell seeding results in a more uniform distribution of cells throughout the 

polymer pad (Vunjak-Novakovik et al., 1996). The support cages were placed in the 

perfusion chambers, which were carefully filled with culture medium to minimize 

disturbance of the cell/polymer constructs. The vessels were sealed and additional medium 

was pumped into the vessels to remove trapped air. The constructs were maintained 

continuously in the cultiure vessels until harvest. 
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Four different experiments were conducted to examine the effects of intermittent 

pressurization level and age of the donor tissue on cartilage regeneration by the isolated 

chondrocytes. Constructs containing chondrocytes from both juvenile and adult horses were 

each subjected to intermittent pressures of 500 and 1000 psi. In each experiment, half of the 

reactors (six) were pressurized and the other half served as nonpressurized controls; all other 

culture conditions were the same. The intermittent pressure regime (five seconds pressurized 

and fifteen seconds depressurized) was applied for 20 minutes every four hours for five 

weeks; prior to pressurization each reactor was perfused with 20 ml of medium from its 

recirculation vessel over a period of three minutes. 

Evaluation of Regenerated Tissue 

The de novo tissue matrix formed by the chondrocytes was examined at three, four 

and five weeks of culture in the compression/perflision system. In most cases, two 

pressurized and two control reactors were sampled each week giving duplicate samples for 

analysis. The three constructs from each reactor were typically divided as follows: one half 

construct for each of the cell, GAG and collagen assays, one half construct for d>Tiamic 

mechanical analysis, and one construct for microscopy. Native tissue from juvenile and adult 

horses was also assayed. 

Cells. The number of chondrocytes per sample were determined in quadruplicate 

from a standard curve by fluorometrically measuring the amount of DNA in papain digests 

using the dye Hoechst 33258 (Kim et al., 1988). Calf thymus DNA was used as the standard. 

A DNA concentration of 7.7 pg/chondrocyte was used to calculate cell numbers per 

construct. 
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GAG. A modified version of the method of Famdale et al. (1986) was used to 

measure in quadruplicate the amount of GAG in the regenerated tissues. Tissue samples 

were desiccated, weighed, and digested for three hours. The digestion was stopped with 

iodacetic acid. One ml of dimethylene blue was added to 50 |al of the digestate, mixed, and 

the absorbance read at 525 nm. Chondroitin sulphate b firom bovine mucosa (Sigma) was 

used as the standard. 

Collagen. Total collagen content was determined in triplicate fi-om the 

hydroxyproline concentration. The samples were hydrolyzed with 6 N HCl for 18 hours at 

115°C and then reacted with chloramine-T and p-dimethylaminobenzaldehyde (Woessner, 

1961). 

Transmission Electron Microscopy (TEM). The collagen fiber density in constructs 

was qualitatively examined by TEM. Samples were washed and fixed in 2% 

paraformaldehyde/3% glutaraldehyde in a 0.1 M PBS buffer at 4 °C for 48 hours. After three 

washes, the samples were rinsed and immersed in 1 % osmium tetroxide in the same buffer 

for two hours at room temperature. After rinsing, the samples were stained with 2% aqueous 

uranyl acetate overnight, dehydrated through a graded alcohol series, and placed in acetone. 

The pieces were embedded in a resin consisting of succinic anhydride, nadic methyl 

anhydride, Embed epoxy resin and 2,4,6-tri(dimethylaminomethyl)phenyl. The resin was 

polymerized by placing the samples in a 60°C oven for two days. The resin blocks were cut 

into 50-80 nm thin sections with a diamond knife, placed on copper slides, and stained with 

lead citrate and uranyl acetate. The samples were viewed on a JEOL 1200 EX n scanning 

transmission electron microscope and the images were photographed with Kodak 50-163. 
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Statistics. Data are presented as means ± 95% confidence with pooled standard 

deviations for samples analyzed within a given week. 

Results 

Cell Concentration 

With a few exceptions at 1000 psi, cell concentrations did not differ significantly 

between pressurized and control samples in both the juvenile and adult tissue constructs 

(Table I). At four and five weeks, cell concentrations in all pressurized constructs were less 

than or equal to the concentrations in control constructs; pressurization has also been shown 

to reduce cell proliferation in explants and cell cultures (Palmoski and Brandt, 1984; van 

Kampen et al., 1985). Native juvenile and adult cell densities were found to be 4 x 10^ to 6 x 

10' cells/g tissue and 2 x 10' to 4 x 10' cells/g tissue, respectively. All conditions led to 

constructs with cell densities near or within the normal range at all sample times. 

Table I. Concentration of chondrocytes (cells/g tissue x 10"') in the cell/polymer constructs. 

Week Juvenile Juvenile Juvenile Adult Adult Adult 
Control 500 psi 1000 psi Control 500 psi 1000 psi 

3 2.21 ± 1.15 2.52 ± 1.99 3.98 ± 1.99 4.62 ± 1.15 6.05 ± 1.40 1.27 ±1.99 

4 4.16 ±1.01 4.70 ±1.01 3.91 ± 1.43 3.61 ± 1.01 3.46 ±1.01 3.49 ±1.43 

5 5.37 ± 1.52 5.20 ± 1.87 1.33 ±2.64 4.97 ± 1.87 2.61 ± 1.99 1.59 ±2.64 
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Sulfated Glycosaminoglycan Concentration 

Constructs which were intermittently compressed exhibited greater concentrations of 

GAG than the non-pressurized controls at both pressures for the juvenile (Fig. la) and at 500 

psi for the adult (Fig. lb) cells. For the juvenile cells, the concentration of GAG in the 

constructs was influenced by the level of applied intermittent pressure, with the higher 

pressure resulting in higher GAG concentrations (Fig. la). At 1000 psi, GAG concentrations 

in the pressurized and control adult constructs were not significantly different. At both 

pressures, GAG concentrations in the adult-derived constructs were consistently lower than 

those produced by juvenile chondrocytes. While tissues developed from adult chondrocytes 

200 
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Figure la. The GAG concentration in tissue constructs from juvenile cells was increased by 
intermittent compression at 500 and 1000 psi. Note the difference in scale between the 
juvenile and adult (Fig. lb) GAG concentrations. 
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Figure lb. Intermittent compression at 500, but not 1000, psi stimulated GAG production in 
tissue constructs from adult ceils. 

did not reach native concentrations of GAG (80 to 120 mg/g tissue) under the given growth 

conditions and length of time cultured, both juvenile experiments resulted in constructs with 

GAG concentrations within the normal range for juvenile tissue (40 to 120 mg/g tissue) at 

five weeks. 

The production of GAG on a per cell basis was calculated to determine whether the 

differences in GAG concentrations between the juvenile and adult constructs resulted, in part 

or in total, from differences in cell density (Table II). Although the adult cells produced 

essentially no GAG between weeks three and five, the specific average production of GAG 
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Table II. Average specific production of extracellular matrix between weeks 3 and 5. 

Construct 
GAG 

(mg/10^ cells) 
Collagen 

(mg/10^ cells) 

Juvenile Control 0.09 0.80 

Juvenile 500 psi 0.45 0.74 

Juvenile 1000 psi 1.94 1.95 

Adult Control 0.01 -0.16 

Adult 500 psi -0.03 0.47 

Adult 1000 psi 0.11 2.65 

(mg/lO' cells) by juvenile cells increased twenty-fold fi:om the control condition to 

intermittent pressurization at 1000 psi, indicating that differences in cell density were not 

responsible for the higher GAG concentration in juvenile constructs. Instead, the ability of 

intermittent pressurization to stimulate GAG production in juvenile, but not adult, cells is 

confirmed. Increased cell density, therefore, would not increase the GAG content to native 

levels in adult constructs, even with intermittent pressurization. 

Collagen Concentration 

The level of applied pressure was particularly important in the production of collagen 

in the constructs. With both juvenile and adult cells, intermittent pressurization at 1000 psi 

resulted in greater collagen concentrations compared to those at 500 psi and the 

unpressurized controls (Fig. 2). Pressurization at 500 psi had little effect on collagen 
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Figure 2. The collagen concentration in tissue constructs from juvenile (a) and adult (b) 
donor cells is increased by intermittent compression at 1000, but not 500, psi suggesting that 
there may be a minimimi pressure to evoke a stimulatory response. 
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concentration as the constructs did not contain any more collagen than nonpressurized 

controls (except at five weeks in adult constructs). While all regenerated constructs had 

collagen concentrations well below native levels (100 to 150 mg/g tissue and 120 to 180 

mg/g tissue for juvenile and adult cartilage, respectively), juvenile constructs contained 

approximately twice as much collagen as adult constructs cultured under similar conditions. 

The stimulative effect of intermittent pressure is also demonstrated on a per cell basis (Table 

II). In the absence of pressure, juvenile cells produce a low level of collagen, while adult 

cells produce essentially none. With intermittent pressure, however, both juvenile and adult 

cells can be induced to produce higher levels of collagen, especially at 1000 psi. On a per 

cell basis, adult cells are as good as, or better than, juvenile cells as producers of collagen. 

With similar cell densities, adult constructs should be able to achieve collagen concentrations 

equivalent to that in juvenile constructs if stimulated with interaiittent pressurization. 

Microscopy 

Qualitative analysis of the extracellular matrix of the constructs regenerated from 

adult chondrocytes (500 psi intermittent compression and control) was made by transmission 

electron microscopy (Fig. 3). TEM sections showed an increase in collagen density in 

pressurized samples from three to seven weeks (Fig. 3 a,b) and between intermittently 

pressurized and control samples at seven weeks (Fig. 3 b,c). The banding pattern indicative 

of Type n collagen is apparent in Fig. 3b. 
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Figure 3. Transmission electron microscopy sections, stained with lead citrate/uranyl acetate 
and photographed at 60,000X, show the collagen fibrils in tissue constructs from adult equine 
chondrocytes. The isolated cells were cultured in a PGA mesh with and without (control) 
intermittent pressurization at 500 psi. Pressurized constructs illustrate increased collagen 
fibril density between three (a) and seven (b) weeks; the nonpressurized control at seven 
weeks (c) shows little collagen. The thick banded (CB) structure indicative of type H 
collagen is visible at seven weeks with pressure (b). Each bar represents 0.1 (im. 
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Discussion 

Many studies have been conducted to investigate the effects of static or dynamic 

mechanical force on cartilage explants or chondrocytes in culture but not for tissue constructs 

and, in most cases, only for short periods of time (48 hours or less). While static 

compressive loading inhibits GAG synthesis (Jones et al., 1982; Schneiderman et al., 1986; 

Gray et al., 1988), cyclical loading over a short time period inhibits cell division (van 

Kampen et al., 1985; Veldhuijzen et al., 1987) and promotes GAG synthesis and overall 

matrix production (Palmoski and Brandt, 1984; van Kampen et al., 1985; Veldhuijzen et al., 

1987; Burton-Wurster et al., 1993; Bacharach et al., 1995; Farquhar et al., 1996; Torzilli et 

al., 1997). There appear to be limits, both for magnitude and frequency of the pressure cycle, 

outside of which these effects may be detrimental (Burton-Wurster et al., 1993; Parkkinen et 

al., 1993; Bacharach et al., 1995; Farquhar et al., 1996), and there is evidence of a "rebound" 

effect with increased cellular metabolism following release of pressure (Lippiello et al., 

1985). Generally speaking, application of stresses below normal physiological levels appears 

to stimulate catabolic activity and within the physiological range leads to maintenance of 

explants (Burger et al., 1991). Stresses higher than physiological are likely to result in tissue 

damage (Farquhar et al., 1996). 

The aim of this study was to investigate the effects of physiological levels of 

intermittent compression on the development of cell/polymer constructs, using cells from 

both juvenile and aduh animals, over a period of several weeks. These experiments were 

made possible by a specially designed system implementing semi-continuous medium 
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perfusion and intermittent hydrostatic pressurization (Carver and Heath, 1998). The system 

is capable of applying different levels, durations, and frequencies of compression as well as 

different rates of fluid flow to developing tissues inside the culture vessels. While other 

systems have been developed for long term culture of cartilage constructs (Dunkehnan et al., 

1995; Bursac et al., 1996; Vunjak-Novakovic et al., 1996; Freed and Vunjak-Novakovic, 

1997), none have also incorporated the ability to intermittently pressurize the constructs 

during development. 

While there was some variation in the results, intermittent pressurization reduced cell 

proliferation and increased the amount of secreted matrix (GAG and collagen) in the tissue 

constructs. Although the cell concentrations were at or near native tissue levels, intermittent 

compression typically resulted in lower cell densities than the unpressurized controls, 

especially in the week five constructs. The lower cell density with pressure is consistent with 

short-term experiments and suggests that mechanically stressed cells may direct their 

anabolic efforts towards production and maintenance of matrix rather than cell proliferation 

(van Kampen et al., 1985; Veldhuijzen et al., 1987). 

The concentration of GAG in the tissue constructs was affected both by the level of 

pressurization and by the age of the donor cells. In constructs derived from juvenile cells, 

intermittent compression resulted in a greater GAG concentration, with higher concentrations 

exhibited at the higher level of pressure. This observation is consistent with animal studies 

showing higher levels of GAG in areas of frequently loaded cartilage (Caterson and Lowther, 

1978; Kiviranta et al., 1988; Saher et al., 1980). Juvenile cells produced higher 

concentrations and amounts per cell of GAG than adult cells, resulting in native levels of 
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GAG in the juvenile constructs. All adult constructs had GAG concentrations well below 

native levels indicating that, while adult cells may respond to pressure with a small increase 

in GAG production, they are poor candidates for de novo chondrogenesis. The concentration 

of proteoglycans is particularly important since they keep the tissue hydrated and their loss 

has been shown to be one of the first events in cartilage degeneration (Cheung et al., 1978). 

Because they have half-lives on the order of weeks or less (Hendrickson et al., 1994), 

proteoglycans must continuously be produced to maintain tissue structure and function. 

In contrast to the increase in GAG concentration at both levels of pressure, collagen 

concentration was no different between control constructs and those pressurized at 500 psi. 

At an intermittent pressure of 1000 psi, however, collagen concentrations were significantly 

greater than the control in both adult and juvenile constructs, suggesting that there may be a 

minimum level of pressure needed to stimulate collagen formation. While neither adult nor 

juvenile constructs reached native levels, collagen concentrations in the juvenile constructs 

were significantly higher than those in the adult constructs. This difference in collagen 

content, however, resulted at least in part from differences in cell density between the 

juvenile and adult constructs since, on a per cell basis, adult cells can produce similar 

amounts of collagen when stimulated by intermittent pressure. The increase in the rate of 

collagen production as a function of time suggests that longer times are needed to achieve the 

levels of collagen found in native tissues. Higher levels of intermittent pressure may also 

result in greater stimulation of collagen production. Other factors, i.e., addition of 

transforming growth factor p to the culture medium (Zimber et al., 1995) and use of collagen 
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scaffolds (Grande et al., 1997), increase the production of type 11 collagen in tissue constructs 

and could be implemented with intermittent compression. 

Despite the increase in matrix production with intermittent pressure, adult cells are 

much less effective in de novo chondrogenesis than juvenile cells primarily because of their 

limited ability to produce native levels of GAG. This result is consistent with earlier work 

demonstrating that chondrocytes isolated from immature rather than matiu^e donors produce 

an improved cartilage surface (Chesterman and Smith, 1968; Bentley and Greer, 1971). 

From a practical standpoint, development of replacement tissue or injection of chondrocytes 

into articular cartilage lesions might be more effective if the recipient's own cells could be 

used since the possibilities of rejection and virus transmission would be eliminated. Cells 

from young donors, however, proliferate more rapidly and are much better producers of 

extracellular matrix. Fortunately, articular cartilage is avascular and alymphatic, and its cell 

density is one of the lowest in the body, greatly reducing the likelihood of rejection. 

Constructs made from a combination of autologous and young donor cells might provide a 

suitable compromise. 

How the cells sense hydrostatic pressure and alter their metabolic activities is still 

unclear. While there is a large body of evidence to support a correlation between cell shape 

and the expressed phenotype (e.g., Glowacki et al., 1983; Newman and Watt, 1988), our 

work, as well as that of others (Horton and Hassel, 1986; Benya et al., 1988; Brown and 

Benya, 1988; Mallein-Gerin et al., 1990), suggests that cell shape is only one of several 

factors influencing cellular activity. Physical deformation of chondrocytes in explants does 

cause changes in cell shape and volume as well as in their phenotypic expression 
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(Buschmann et al., 1996). Cells in this study, however, should not have experienced a 

change in shape because the hydrodynamic compression was isotropic. Because of the 

pressure differential across the cell membrane, the cells may have experienced instead a 

small change in volume which could have affected the structural arrangement of the 

cytoskeleton. Changes in cytoskeletal structure may be more directly responsible for changes 

in phenotypic expression than cell shape or volume alone (Brown and Benya, 1988; Mallein-

Gerin et al., 1990; Wang et al., 1993). The presence of extracellular matrix also appears to be 

important as stimulation of biosynthesis was enhanced following dynamic compression of 

chondrocytes immobilized in agarose gel when more matrix was present around the cells 

(Buschmann et al., 1995). Additional study is needed to determine how these factors and 

others influence phenotypic expression of loaded cartilage. 

Although the cartilage constructs developed in this study exhibited near native 

concentrations of cells and GAG and higher concentrations of collagen than we have seen in 

the past, the constructs were smaller in size and mass than those produced by other 

investigators (Freed and Vunjak-Novakovic, 1997). As has akeady been demonstrated 

(Bursac et al., 1996; Vunjak-Novakovic et al., 1996; Freed et al., 1993,1994 a,b), small 

constructs are most likely a result of mass transfer limitation. In tlie experiments described in 

this paper, fluid flow in the chambers containing the constructs only occurred for 18 minutes 

each day (6.67 ml/min) and was not turbulent; the fluid surrounding the constructs was 

stagnant at all other times. These results confirm that convective transport is a critical 

component of nutrient transfer especially in the early stages of culture when the constructs 

are still very porous (Bursac et al., 1996). Experiments are in progress to determine whether 
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fluid flow for longer periods and at higher velocity will increase the accessibility of nutrients 

to the inner regions of the constructs and result in larger, stronger tissues. 

Conclusions 

Using the custom-made compression/perfusion system, intermittent pressurization of 

cell-polymer constructs resulted in an increased level of de novo chondrogenesis compared to 

nonpressurized controls. Intermittent pressure at physiological levels increased extracellular 

matrix formation for both adult and juvenile chondrocytes but with constructs from juvenile 

cells exhibiting extracellular matrix compositions more like that of native tissue. The use of 

cells from young animals appears to be critical for extracellular matrix formation and the 

successful development of tissue constructs in vitro. Sulfated glycosaminoglycan 

concentrations increased in juvenile constructs as the level of intermittent pressure increased 

and were within the range found in native tissue. Collagen concentration levels were not 

affected at the lower intermittent pressure (500 psi). At 1000 psi, however, collagen 

synthesis increased, suggesting that there may be a minimum intermittent pressure needed to 

stimulate collagen production. 
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CHAPTER 4. THE INFLUENCE OF PRESSURIZATION, FLUTO 
FLOW, AND MIXING ON THE REGENERATIVE PROPERTIES OF 

ARTICULAR CHONDROCYTES 

A paper submitted to Biotechnology and Bioengineering 

Scott E. Carver and Carole A. Heath 

Abstract 

Equine articular chondrocytes, embedded within a polyglycolic acid nonwoven mesh, 

were cultured with various combinations of pressurization, fluid flow, and mixing to examine 

the effects of different physical stimuli on de novo chondrogenesis. The cell/polymer 

constructs were cultured first in 125 ml spinner flasks for one, two, or four weeks and then in 

a perfusion system with physiological intermittent pressure for a total of up to six weeks. 

Additional constructs were either cultured for all six weeks in the spinner flasks or for one 

week in spinners followed by five weeks in the perfusion system wdthout intermittent 

compression. Tissue constructs cultivated for two or four weeks in spinner flasks followed 

by perfusion with intermittent pressurization had significantly higher concentrations of both 

sulfated glycosaminoglycan and collagen than constructs cultured entirely in spinners or 

almost entirely in the compression/perfusion system. Initial cultivation in the spinner flasks, 

with turbulent mixing, enhanced both cell attachment and early development of the 

extracellular matrix. Subsequent culture with perfusion and intermittent compression 

appeared to accelerate matrix formation. While the correlation was much stronger in the 
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pressurized constructs, the compressive modulus was directly proportional to the 

concentration of sulfated glycosaminoglycan in all physically stressed constructs. Constructs 

which were not stressed beyond the one week seeding period lost mechanical integrity upon 

harvest suggesting that administration of physical forces, particularly compression, to tissue 

constructs during their development may be an important determinant of their ultimate 

biomechanical functionahty. 

Keywords: cartilage, chondrocytes, mixing, pressure, tissue 

Introduction 

Osteoarthritis, in which the hyaline cartilage of the articulating joints is irreversibly 

degraded, affects more people in the United States than all other forms of arthritis combined 

(Brewerton, 1992). In an effort to cure this often debilitating disease, many researchers have 

investigated using cell-based therapies as an alternative to total joint replacements. If 

detected early enough, osteoarthritic degradation can be arrested with localized cell injections 

(Brittberg et al., 1994). If the defect becomes too large, however, the cells require a 

structured framework at the defect site until they can create their own extracellular matrix 

(ECM) for support. Chondrocytes, the only cell type found in articular cartilage, possess the 

ability to produce the two main organic components normally comprising the ECM, namely 

type n collagen and proteoglycan. 

In order for articular chondrocytes to produce the appropriate types and 

concentrations of the ECM components, they must be cultured in an environment that mimics 
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certain aspects of the in vivo system. Culture in a three-dimensional environment is needed 

for production of type 11 collagen (Benya and Shaffer, 1982). Various biocompatible 

materials, primarily resorbable polymers, have been used to provide articular chondrocytes 

with a three-dimensional structure (Klompmaker et al., 1992; Freed et al., 1993; Kim et al., 

1994; Grande et al., 1997). When the cell/polymer constructs are of the same dimensions as 

in vivo tissue, however, they must be cultured in a well-mixed environment to overcome 

diffusion limitations of nutrients to cells in the center of the constructs (Vunjak-Novakovic et 

al., 1996). While mi.xed systems support growth of tissue constructs with many of the same 

biochemical characteristics as articular cartilage, additional forces may be needed for the 

development of a mechanically functional biological graft. 

In vivo, articular cartilage is frequently loaded as the joint performs its normal 

functions. When pressurized dynamically, chondrocytes increase production of proteoglycan 

(Veldhuijzen et al., 1987; Parkkinen et al., 1993; Burton-Wurster et al., 1993), which plays 

the important role of maintaining tissue hydration and resistance to compression. The 

benefits of applying dynamic forces at physiological levels (TorziUi et al., 1997), over long-

term durations (Heath and Magari, 1996), and to chondrocytes cultiu-ed in a three 

dimensional environment (Buschmann et al., 1995) have been demonstrated; however, a 

system which combines all of these conditions has only recently been developed (Carver and 

Heath, 1998a). With this system, physiological levels of intermittent pressure enhanced the 

production of ECM in cartilage constructs (Carver and Heath, 1998b). The tissue constructs 

contained native levels of cells and sulfated glycosaminoglycans (GAG) and possessed 

higher concentrations of collagen than without pressurization. Without convection, however. 
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mass transfer limitations resulted in tissue constructs that were smaller in size and mass than 

have been developed in mixed systems (Freed and Vunjak-Novakovic, 1997). The purpose 

of this study was to determine whether combination of the separately-advantageous 

conditions of mixing/fluid flow and intermittent pressurization would synergistically enhance 

the development of cartilaginous tissue constructs from isolated equine chondrocytes. 

Materials and Methods 

Chondrocyte Isolation 

Articular cartilage was surgically excised from the stifle joint of healthy foals 

O'uvenile horses) no older than one month (College of Veterinary Medicine, Iowa State 

University, Ames, LA). The tissue was enzymatically digested using type II collagenase as 

previously described (Klagsbrun, 1979) and the digestate was collected in sterile centrifrige 

tubes. After two washes in 0.1 M phosphate buffered saline, a cell pellet was formed and 

resuspended in culture medium. The culture medium used for all experiments was 

Dulbecco's Modified Eagle's Medium (Gibco, Grand Island, NY) supplemented with 10% 

fetal bovine serum (Gibco), antibiotics (10,000 U/ml penicillin and 10 mg/ml streptomycin; 

Gibco), 10 mM HEPES (Sigma Chemical, St. Louis, MO), and 50 |ag/ml ascorbic acid 

(Sigma). The cells were counted with a hemacytometer using Trypan Blue (Sigma) to test 

for viability and cultured in 225 cm" tissue culture flasks (Coming, Coming, NY) at a 

concentration of 1x10^ cells/ml. 
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Polyglycolic Acid Substrate Preparation 

The polyglycolic acid (PGA) nonwoven mesh (97% void volume, 13 |im diameter 

fibers) was supplied in square pads measuring 1 cm x 1 cm x 0.5 cm thick (Albany 

International, Mansfield, MA). According to the manufacturer, PGA is completely resorbed 

over a period of 120 days and loses its strength by about 30 to 40 days in vitro. Prior to cell 

seeding, the polymer pads were placed in screen tissue baskets (Ted Pella, Redding, CA) 

which were modified to allow additional medium flow through the endcaps. The support 

baskets and the enclosed polymer pads were sterilized with ethylene oxide (EtO), oven dried, 

and washed with culture medium to remove residual EtO and to pre-wet the polymer pads. 

Mixed Cultures 

After three passages, the chondrocytes were trypsinized, collected in culture medium, 

and placed in 125 ml spinner flasks each containing six tissue baskets resting on the bottom 

of the vessel. The chondrocytes were dynamically seeded into the pads at a density of 

approximately 4 x 10® cells/pad as previously described (Vunjak-Novakovik et al., 1996). 

The flasks were stirred at approximately 50 rpms and were maintained in incubators at 37°C 

and 5% CO,. Seventy-five percent of the culture medium was replaced weekly until the 

tissue baskets were harvested or moved to the compression/perflision system. 

Pressurized Cultures 

At one, two or four weeks post seeding, cell/polymer constructs were transferred from 

spinner flasks to the compression/perfusion system which allows the application of 

physiological levels of intermittent hydrostatic pressure and nearly continuous fluid flow 

(Carver and Heath, 1998a). The compression/perfusion system was modified to allow 
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medium to enter the top of the reaction vessel and exit the bottom to prevent the cell/polymer 

constructs from being entrained in the fluid flow and moving to the top of the vessel. Three 

tissue baskets were transferred to each reaction vessel and the vessels were prepared as 

previously described (Carver and Heath 1998b). Medium was continuously perfiised through 

the vessels (10 ml total volume each) at a rate of approximately 3 ml/min during all times 

when the reactors were not pressurized (22 hours/day). Except for the controls, each reactor 

was pressurized intermittently (5 sec on/15 sec off) at 500 psi for 20 minutes every 4 hours (2 

hotu's of pressurization per day). 

Experimental Design 

Five separate experiments were performed to determine the effects of mixed and 

pressurized culture environments, combined and alone, on de novo chondrogenesis. Tissue 

constructs were cultured in spinners for one, two, and four weeks and then transferred to the 

compression/perfusion system for up to a total of six weeks. Constructs were also cultured in 

spirmers for the entire six weeks and in the perfusion system without pressurization (control) 

for five weeks, after one week in spinner flasks. Details of the five experiments and 

corresponding nomenclature are listed in Table I. 

Table I. Experimental design and designated nomenclature. 

Experiment Label Weeks in Spinner Flasks Weeks in Perfusion Reactor 
with Intermittent Pressure 

ls5c 1 5 (without pressure) 
ls5p 1 5 
2s4p 2 4 
4s2p 4 2 

6s 6 0 



www.manaraa.com

108 

Construct Analysis 

Tissue constructs were examined at four, five, and six weeks for each of the five 

experiments. Two compression/perfiision reactors (12 constructs) were haivested each week 

for qualitative and quantitative analysis. Two constructs were used for each assay and 

compression testing; the remainder of the constructs were prepared for microscopy. Two 

tissue baskets were harvested each week firom the spinner flasks. Two-thirds of a construct 

was used for each form of quantitative analysis and the remainder was used for microscopy. 

Cells. The number of chondrocytes per construct was determined in quadruplicate 

firom a standard curve by fluorometrically measuring the amount of DNA in papain digests 

using the dye Hoechst 33258 (Kim et al., 1988). With calf thymus DNA as the standard, cell 

numbers were calculated using a concentration of 7.7 pg DNA/chondrocyte. 

GAG. A modified version of the method of Famdale et al. (1986) was used to 

measure in quadruplicate the amount of GAG in the tissue constructs. Samples were 

desiccated, weighed, and digested for 24 hours with papain. One ml of 1,9-dimethyl-

methylene blue (Aldrich) was added to 20 ^1 of the digestate, mixed, and the absorbance read 

at 525 nm. Chondroitin sulphate b firom bovine mucosa (Sigma) was used as the standard. 

Collagen. Total collagen content was determined in triplicate fi-om the 

hydroxyproline concentration. The samples were hydrolyzed with 6 N HCl for 18 hours at 

115°C and then reacted with chloramine-T andp-dimethylaminobenzaldehyde as previously 

described (Woessner, 1961). 

Compressive Modulus. The compressive modulus, which is a measiure of the stiffiiess 

or strength of the material, was determined firom stress versus strain data obtained with a 
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Dynamic Mechanical Analyzer (DMA.-7, Parkin-Elmer) equipped with a parallel plate 

sample holder. The compressive modulus was determined from Pyris software for Windows 

(Perkin Elmer) as the slope at 1% strain (0-2% tested over a period of not more than five 

minutes). 

Electron Microscopy. Tissue constructs were assessed qualitatively using scaiming 

electron microscopy (SEM) and transmission electron microscopy (TEM). Constructs were 

washed with phosphate buffered saline (PBS, 0.1 M, pH 7; Sigma) and fixed in 2% 

paraformaldehyde/3% glutaraldehyde for 48 hours. After three washes with PBS, the 

samples were rinsed and immersed in 1% osmium tetroxide in the same buffer for two hours. 

After rinsing with PBS and water, the samples were dehydrated through a graded alcohol 

series up to 100% ethanol. SEM samples were critical point dried with carbon dioxide and 

sputter coated with gold/palladium. TEM pieces were placed into acetone as a transition 

fluid then embedded in a resin of succinic anhydride, nadic methyl anhydride. Embed resin 

and 2,4,6-tri(dimethylaminomethyl)phenyl. The resin was polymerized by placing the 

samples in a 60°C oven for two days. The resin blocks were cut into 50-80 nm thick sections 

with a diamond knife and stained with lead citrate and uranyl acetate. The samples were 

viewed on a JEOL 5800LV for SEM and on a JEOL 1200 EX n scanning transmission 

electron microscope for TEM. 

Statistics. Data are presented as means ± pooled standard deviations for samples 

analyzed within a given week. Significant differences were determined using the Student's t 

test; all error was calculated with p<0.05. 
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Results 

Cell Concentrations 

At week four, the concentration of cells in all five experiments (Table 11) was within 

or above the native regime, which ranges fi-om 4 x 10^ to 6 x lO'cells/g tissue (wet weight) in 

the stifle joint of juvenile horses (Carver and Heath, 1998b). By week six, the ls5c and ls5p 

constructs retained cell concentrations within or very near the native regime, while the others 

either dropped below (4s2p) or increased above (2s4p and 6s) the native range. There were 

no clear trends of cell density variation with culture regimen. 

Table II. Cell concentrations (cells/g tissue x 10"') in tissue constructs. 

Week ls5c ls5p 2s4p 4s2p 6s 

4 7.89 ±2.84 6.90 ±2.01 5.52 ±2.01 3.98 ±2.01 8.43 ± 2.84 

5 2.47 ± 2.02 NA 9.31 ±2.02 1.74 ±2.02 7.55 ±2.86 

6 4.87 ± 2.49 7.09 ± 2.88 13.12 ±2.49 1.82 ±3.53 18.63 ±3.53 

Sulfated Glycosaminoglycan Concentrations 

The concentration of GAG increased fi^om week four to week six in all five 

experiments (Fig. 1). The GAG concentration was greatest in the 2s4p construct at each 
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Figure 1. The concentration of GAG increased with culture time in all constructs. 
Constructs cultured for two weeks or more in spinner flasks contained higher concentrations 
of GAG, with the combined spinner and compression/perfusion constructs (2s4p) showing 
the greatest GAG content. 

week and, at weeks four and five, significantly exceeded concentrations found in the other 

experiments by 1.5 to 20 times. At week six, the GAG concentrations in the ls5p, 4s2p, and 

6s constructs were in the native regime for foal articular cartilage (40 to 120 mg GAG/g 

tissue; Carver and Heath, 1998b) and not significantly different fi-om each other, while 

concentrations in the 2s4p and ls5c constructs were slightly above and below native 

concentrations, respectively. 

The average specific production of GAG (mg per 10^ cells), calculated to account for 

differences in construct cell density (and the wet and dry weights used as a basis for 
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calculating cell and GAG concentrations, respectively), confirmed the synergistic effect seen 

by combining mixing and intermittent pressurization in the 2s4p constructs (Table III). By 

contrast, no GAG was produced in constructs cultured for four weeks in the spinners, 

followed by tvvo weeks in the compression/perfusion system (during which the production 

was measured). 

Table III. Average specific production of extracellular matrix between weeks 4 and 6. 

GAG Collagen 
Experiment (mg/10^ cells) (mg/10^ cells) 

ls5c 0.60 + 0.60 0.14 + 0.12 

ls5p 0.96 + 0.44 0.56 + 0.11 

2s4p 2.54 + 0.39 0.62 + 0.09 

4s2p 0.01+0.90 0.68 + 0.35 

6s 0.74 + 0.37 0.09 + 0.05 

Total Collagen Concentrations 

From week four to week six, the concentration of total collagen increased in all five 

experiments (Fig. 2). At week six, the collagen concentration was greatest in the 2s4p and 

4s2p constructs, and there was no significant difference in concentration between the ls5p 

and 6s constructs. The ls5c constructs contained significantly less collagen at each week 

than all other constructs, indicating that collagen production was clearly hindered by the 
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absence of any physical stimulation. All measured collagen concentrations were well below 

native concentrations (100 to 150 mg/g tissue; Carver and Heath, 1998b). 

The small but measurable influence of intermittent pressurization on collagen 

production can be seen by comparing the average amount of collagen produced per cell 

between weeks four and six in the five experiments (Table III). Constructs fi-om the three 

experiments involving intermittent pressurization (ls5p, 2s4p, 4s2p) showed greater specific 

production of collagen than the two non-pressurized experiments (ls5c, 6s). 

10 -

. -Isbp 

2s4p 

x---4s2p 

Time (week) 

Figure 2. While total collagen concentrations was lowest in the control constructs, the 
collagen content in all physically stimulated constructs increased with time and were 
significantly greater than the control. As with GAG, constructs cultured for two weeks or 
more in spirmer flasks contained higher concentrations of collagen, with the combined 
spinner and compression/perfusion constructs (2s4p and 4s2p) showing the greatest collagen 
content at six weeks. 
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Dynamic Mechanical Analysis 

While the linear relationships were very similar, the compressive modulus was more 

strongly correlated with the GAG concentration in constructs which were cultured primarily 

in a pressurized environment (Fig. 3a) compared to those cultured mainly in a mixed 

environment (Fig. 3b). None of the constructs reached native levels of the compressive 

modulus (0.15 to 0.30 MPa; Palmer et al., 1995) despite exhibiting native concentrations of 

GAG. At week six, the compressive modulus was highest in the 2s4p construct and lowest in 

the ls5p construct (Table II). The ls5c constructs were too fragile to allow determination of 

the compressive modulus. 
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Figure 3a. The compressive modulus versus GAG concentration in pressurized samples. 
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Figure 3b. The compressive modulus versus GAG concentration in mixed samples. 

Electron Microscopy 

SEM was used to examine cell attachment and ECM formation in tissue constructs 

after one, two, and four weeks of culture in spinner flasks (Fig. 4). At week one, 

chondrocytes were adhered to the PGA fibers but little ECM was present (Fig. 4a). At two 

weeks, the presence of the ECM was clearly evident (Fig 4b) and, at four weeks, the ECM 

was very dense (Fig. 4c). At the ultrastructural level, TEM showed the orientation of 

collagen around a chondrocyte (Fig. 5a) and proteoglycan intertwined among collagen fibrils 

(Fig. 5b) in a six week 2s4p construct. 
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Figure 4. Scanning electron micrographs of 6s constructs harvested at (a) I week, (b) 2 
weeks, and (c) 4 weeks. All samples were coated with gold/palladium and photographed at 
150 X and 10 kV. Each bar represents 30 jam. 
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Figure 5. Transmission electron micrographs show (a) the collagen orientation around 
chondrocyte at 10,000 X (bar = 0.5|im), and (b) proteoglycan (P) at 40,000 X (bar = 0.1 
in a 2s4p construct. All sections were stained with lead citrate and uranyl acetate. 
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Discussion 

In the past decade there have been many advances in understanding the conditions 

necessary to develop tissue constructs for replacement of damaged or diseased articular 

cartilage. To be useful in vivo, these grafts must possess the same biochemical composition 

and biomechanical properties as healthy native tissue. Our work to date has focused on 

determining the effects of physical stresses (compression and shear) on development of 

cartilaginous tissue constructs from isolated chondrocytes embedded in a cell/polymer 

matrix. 

Dynamic compressive loading has been shown many times to increase the production 

of GAG, a component of the proteoglycan macromolecule, by articular chondrocytes in cell 

cultures and explants over the short term (Parkkinen et al., 1993; Buschmann et al., 1995). 

Using a reaction system which incorporates many of the same conditions as an articulating 

joint (physiological levels of loading, long-term culture, and a suitable 3-D growth 

environment), this work and others (Carver and Heath, 1998a,b) have demonstrated that 

dynamic compression also increases GAG production in tissue constructs during long term 

culture. Well-mixed systems also support development of tissue constructs with GAG 

concentrations in the native regime (Freed and Vunjak-Novakovic, 1997) indicating that 

either compression or shear, the primary forces experienced in the native joint, can be used to 

stimulate GAG production by chondrocytes. An additional advantage of well-mixed systems 

(Freed and Vunjak-Novakovic, 1997) is that they support development of tissue constructs 

which are larger in size and mass than those cultured only in pressurized systems (Carver and 
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Heath, 1998b). As demonstrated in this study, tissue constructs with higher concentrations of 

GAG and collagen, greater mass, and mechanical properties more like those in vivo than 

those cultured with hydrostatic compression or fluid shear alone can be produced by 

combining these forces, suggesting a synergistic relationship which may contribute to the 

development of cartilaginous tissue. Simultaneous shear and compression, as experienced in 

vivo, may provide the optimum environment. 

Although the tissue constructs developed in this study had the same concentration of 

GAG as native tissue, the values of the compressive modulus were below the native range. 

Earlier studies have shown that high proteoglycan content is correlated with high 

compressive modulus (Kempson et al., 1980; Akizuki et al., 1986). This apparent 

inconsistency suggests that concentration alone may not be a good indicator of tissue 

mechanical strength in immature tissues or tissue constructs. The molecular structure of 

GAG (and collagen) is also an important component of the tissue's ability to withstand 

repeated dynamic loading (Mow et al., 1984). The low values (by a factor of two or more) 

of the compressive modulus compared to native values observed in this study suggest either 

that the GAG had not aggregated to the extent found in vivo and/or that the low levels of 

collagen, which serves to constrain the aggregated proteoglycan molecules, limited the ability 

of the tissue to resist compression. Whether or not physical forces affect GAG aggregation 

and/or association with collagen is still under investigation; however, we have repeatedly 

seen a strong correlation between the compressive modulus and the concentration of GAG 

only in pressurized samples (Carver and Heath, 1998a) suggesting that intermittent pressure 

at physiological levels may influence structure as well as content during de novo 
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chondrogenesis. Addressing concerns such as these is critical to the development of 

functional grafts. 

Production of native levels of collagen in tissue constructs has continued to be an 

obstacle despite recent advances. The production of collagen by articular chondrocytes 

increases when cultured on collagen (Grande et al., 1997), with growth factors such as TGF-P 

(Zimber et al., 1995), by increasing the cell seeding density (Vunjak-Novakovic et al., 1998), 

with increasing levels of intermittent pressurization (Carver and Heath, 1998b), and, as 

shown in this work, in a combination of well-mixed and pressurized growth environments. 

Using the compression/perflision system (Carver and Heath, 1998a), it is possible to culture 

tissue constructs with a combination of these conditions for long time periods so that 

collagen production by articular chondrocytes can be maximized and constructs are allowed 

adequate time to fully develop. Whether this will be sufficient to regenerate constructs with 

native concentrations of ECM components and biomechanical properties remains to be seen. 

Combining mixing and intermittent pressure results in higher concentrations of GAG 

and collagen in tissue constructs than application of either condition alone, suggesting that 

the optimum culture environment for de novo chondrogenesis should include both. While 

mixing has ahready been noted for its ability to promote seeding and distribution of cells 

throughout the polymer matrix (Vunjak-Novakovic et al., 1996), culture of cell/polymer 

constructs in spinner flasks beyond the time necessary for seeding may provide additional 

benefits which result from convective mass transfer. SEM micrographs of constructs from 

spinner flasks show cells adhered to the PGA but little ECM at one week; by two weeks, the 

presence of the ECM is obvious. By four weeks, the ECM appeared much denser than at two 
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weeks; quantitatively, the GAG and collagen concentrations in the 6s constructs at four 

weeks were at or near the highest of the five experimental conditions. By six weeks, 

however, the constructs cultured in a combination of environments had higher concentrations 

of GAG (2s4p) and collagen (2s4p, 4s2p) than those grown in spinners alone (6s). Culture of 

constructs for up to two weeks in spirmer flasks prior to transferring them to the 

compression/perfusion system enhanced de novo chondrogenesis. Perhaps the well-mixed 

environment of the spinner flask facilitated early development of the ECM, the presence of 

which enhanced the response of the construct to intermittent compression. In a similar 

fashion, dynamic compression of chondrocytes immobilized in an agarose gel resulted in 

increased rates of matrix formation at higher concentrations of the ECM (Buschmann et al., 

1995). 

Conclusions 

Development of cartilaginous tissue constructs in a combination of mixed and 

pressurized environments resulted in greater concentrations of GAG and collagen than 

culture with mixing or intermittent pressure alone. The highest concentrations and 

productivities of GAG and collagen were found almost exclusively in constructs cultured for 

two or four weeks in spinner flasks followed by intermittent pressurization with perfusion. 

Well-mixed culture promoted cell attachment and distribution of cells within the polymer 

matrix as well as development of the ECM, which was confirmed by SEM. Subsequent 

culture with intermittent pressure appeared to accelerate the production of GAG and collagen 

suggesting that the presence of a partially developed ECM enhanced the cellular response to 
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compression. Finally, the compressive modulus was directly proportional to GAG 

concentration in all physically stressed constructs but with a stronger correlation for 

constructs developed primarily in the pressurized environment. Physical forces may 

influence not only the composition but also the structure of developing tissue and may be 

critical to the production of ftmctional biological grafts. 

Acknowledgments 

Support from the National Science Foundation (BCS-9496125) and the National 

Aeronautics and Space Administration (NAG-9827) is gratefully acknowledged. The authors 

thank Drs. Larry Booth and Axel Sondhoff for their help in acquiring cartilage, Justin Glenn 

for help with assay procedures, and the Bessey Microscopy Facility for assistance with 

electron microscopy. 

References 

Akizuki, S. A., Mow, V. C., Lai, W. M., Pita, J., Howell, D. S. 1986. Topographical 

variations of the biphasic indentation properties of human tibial plateau cartilage. Trans. 

Orthop. Res. Soc. 11: 406. 

Benya, P. D. and Shaffer, J. D. 1982. Dedifferentiated chondrocytes reexpress the 

differentiated collagen phenotype when cultured in agarose gels. Cell. 13: 215-224. 

Brewerton, D. 1992. All About Arthritis, Harvard University Press, Cambridge, MA., 87-

135. 



www.manaraa.com

123 

Brittberg, M., Lindahl, A., Nilsson, A., Ohlsson, C., Isaksson, 0. and Peterson, L. 1994. 

Treatment of deep cartilage defects in the knee with autologous chondrocyte 

transplantation. The New England Journal of Medicine. 331(14): 889-895. 

Burton-Wurster, N., Vernier-Singer, M., Farquhar, T., Lust, G. 1993. Effect of compressive 

loading and unloading on the synthesis of total protein, proteoglycan and fibronectin by 

canine cartilage explants. J Orthop. Res. 11: 717-729. 

Buschmann, M. D., Gluzband, Y. A., Grodzinsky, A. J., Hunziker, E. B. 1995. Mechanical 

compression modulates matrix biosynthesis in chondrocyte/agarose culture. J. Cell Sci. 

108: 1497-1508. 

Carver, S. E., Heath, C. A. 1998a. A semi-continuous perfusion system for delivering 

intermittent physiological pressure to regenerating cartilage. Tissue Engr., in press. 

Carver, S. E., Heath, C. A. 1998b. Increasing extracellular matrix production in regenerating 

cartilage with intermittent physiological pressure. Submitted. 

Famdale, R. W., Buttle, D. J., Barrett, A. J. 1986. Improved quantitation and discrimination 

of sulfated glycosaminoglycans by use of dimethylmethylene blue. Biochim. Biophys. 

Acta. 883: 173-177. 

Freed, L. E., Marquis, J. C., Nohria, A., Emmanual, J., Mikos, A. G., Langer, R. 1993. 

Neocartilage formation in vitro and in vivo using cells cultured on synthetic 

biodegradable polymers. J. ofBiomed. Mat. Res. 27: 11-23. 

Freed, L. E., Vunjak-Novakovic, G. 1997. Microgravity tissue engineering. In Vitro Cell. 

Dev. Biol.-Animal 33: 381-385. 



www.manaraa.com

124 

Grande, D. A., Halberstadt, C., Naughton, G., Schwartz, R., Manji, R. 1997. Evaluation of 

matrix scaffolds for tissue engineering of articular cartilage grafts. J. Biomed. Mater. Res. 

34:211-220. 

Heath, C. A., Magari, S. R. 1996. Mini-review: Mechanical factors affecting cartilage 

regeneration in vitro. Biotechnol. Bioeng. 50: 430-437. 

Hendrickson, D. A., Nixon, A. J., Grande, D. A., Todhunter, R. J., Minor, R. M., Erb, H., 

Lust, G. 1994. Chondrocyte-fibrin matrix transplants for resurfacing extensive articular 

cartilage defects. J. Orthop. Res. 12: 485-497. 

Kempson, G. E., Muir, H., Freeman, M. A. R., Swanson, S. A. V. 1980. Correlations 

between the compressive stiffiiess and chemical constituents of human articular cartilage. 

Biochim. Biophys. Acta 215: 70. 

Kim, Y. J., Sah, R. L. Y., Doong, J. Y. H., Grodzinsky, A. J. 1988. Fluorometric assay of 

DNA in cartilage explants using Hoechst 33258. Anal. Biochem. 174: 168-176. 

Kim, W. S., Vacanti, J. P., Cima, L., Mooney, D., Upton, J., Puelacher, W. C., Vacanti, C. A. 

1994. Cartilage engineered in predetermined shapes employing cell transplantation on 

synthetic biodegradable polymers. Plas. Recon. Surg. 94: 233-237. 

Klagsbrun, M. 1979. Large-scale preparation of chondrocytes. Meth. Enzym. 58: 549-560. 

BClompmaker, J., Jansen, H. W. B., Veth, R. P. H., Nielsen, H. K. L., de Groot, J. H., 

Pennings, A. J. 1992. Porous polymer implants for the repair of full-thickness defects of 

articular cartilage: an experimental study in rabbit and dog. Biomat. 13(9): 625-634. 



www.manaraa.com

Mow, W. C., Mak, A. F., Lai, W. M., Rosenberg, L. C., Tang, L.-H. 1984. Viscoelastic 

properties of proteoglycan subunits and aggregates in varying solution concentrations. J. 

Biomechanics 17: 325-338. 

Palmer, J. L., Bertone, A. L., Mansour, J., Carter, B. G., Malemud, C. J. 1995. 

Biomechanical properties of third carpal articular cartilage in exercised and nonexercised 

horses. J. Orthop. Res. 13: 854-860. 

Parkkinen, J., Ikonen, J., Lammi, M., Laakkonen, J., Tammi, M., Helminen, H. J. 1993. 

Effects of cyclic hydrostatic pressure on proteoglycan synthesis in cultured chondrocytes 

and articular cartilage explants. Arch. Biochem. Biophys. 200: 458-465. 

Torzilli, P. A., Grigiene, R., Huang, C., Friedman, S. M., Doty, S. B., Boskey, A. L., Lust, G. 

1997. Characterization of cartilage metabolic response to static and dynamic stress using 

a mechanical explant test system. J. Biomech. 30: 1-9. 

Veldhuijzen, J. P., Huisman, A. H., Vermeiden, J. P. W., Prahl-Anderson, B. 1987. The 

growth of cartilage cells in vitro and the effect of intermittent compressive force. A 

histological evaluation. Conn. Tiss. Res. 16: 187-196. 

Vunjak-Novakovic, G., Freed, L. E., Biron, R. L., Langer, R. 1996. Effects of mixing on the 

composition and morphology of tissue engineered cartilage. AIChE J. 42: 850-860. 

Woessner, J. F. 1961. The determination of hydroxyproline in tissue and protein samples 

containing small proportions of this imino acid. Arch. Biochem. Biophys. 93: 440-447. 

Zimber, M. P., Tong, B., Dunkelman, N., Pavelec, R., Grande, D., Ligou, N., Purchio, A. F. 

1995. TGF-(3 promotes the growth of bovine chondrocytes in monolayer culture and the 

formation of cartilage tissue on three-dimensional scaffolds. Tissue Engr. 1: 289-300. 



www.manaraa.com

126 

CHAPTER 5. GENERAL CONCLUSIONS 

General Discussion 

The long-term goal of this project was to develop regenerated articular cartilage in 

vitro most like that found in vivo in the shortest time possible. Of particular interest was the 

effect of physiological intermittent pressurization on the production of the extracellular 

matrix (ECM) by articular chondrocytes since articular cartilage in vivo is frequently loaded 

in a dynamic manner. In order to fulfill this goal, a cell culture system was designed and 

constructed which was capable of delivering physiological levels of hydrostatic 

pressurization in an intermittent maimer to regenerating cell/polymer constructs. The 

challenge in creating a reaction system which could effectively create native-like tissue was 

combining many different culture conditions which had previously been determined 

individually, such as a three-dimensional growth environment, long-term cultures, and 

dynamic loading similar to that found in vivo. Nonwoven meshes of polyglycolic acid (PGA) 

have been quite effective in providing chondrocytes with the three-dimensional environment 

they need to produce extracellular matrix components normally found in vivo [1-6]. This 

particular polymer was used in our experiments because it is biodegradable, resorbable, 

easily formed into given shapes, and commerically available. Intermittent pressurization [7] 

and physiological hydrostatic pressurization [8] have both been found to increase the 

production of the extracellular matrix. Because of the nutrient requirements by the cells, 

however, studies which were able to previously combine these conditions were limited to 

short culture times (up to 48 hours) which is not long enough to fully develop a regenerated 
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construct [9]. In order to increase the culture time, medium must be replaced on a regular 

basis [10]. By combining these key culture conditions we were able to effectively develop de 

novo tissue with many of the characteristics of native tissue. 

Because a reaction system like ours had never been developed before, many 

experiments were performed to optimize the culture conditions. Glucose and oxygen uptake 

experiments were performed to model the nutrient requirements by isolated articular 

chondrocytes, allowing us to determine how often fresh medium must be perfiised through 

the reaction space. In our initial experiments, medium was only perfused through each 

reactor for a total of 18 minutes every day to fulfill the minimum nutrient requirements of the 

isolated cells; the reactors remained stagnant the remainder of the time. Excess medium 

perfusion was unnecessary to show the effects of physiological intermittent pressurization on 

the production of the ECM. Initial experiments were performed to show that the system 

could be used to culture regenerating tissue and to what extent the application of pressure 

would enhance the production of the ECM. 

Adult chondrocytes were used in the first few experiments because the ability to 

regenerate native articular cartilage with these cells would be advantageous. From a practical 

standpoint, regenerating articular cartilage to be used as a replacement tissue would be 

quicker and safer if subjects needing the tissue could donate their own cells because the 

tissue would be readily available and the chance of rejection would be reduced. Typically, 

the cells found within osteoarthritic cartilage are no longer capable of regenerating the 

extracellular matrix. As an animal grows, its bones elongate, with the development of 

articular cartilage preceding bone formation. When a bone reaches its maximum length the 
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epiphyseal plate closes, and the chondrocytes making up the cartilage may exhibit a decrease 

in their metabolism. Since cartilage production is no longer necessary when a joint is fully 

developed, the chondrocytes within the cartilage may start focusing on maintaining the 

tissue. If there was some way to increase the rate of matrix production above that required 

for normal maintenance then regenerating native tissue would become possible. Whether 

intermittently applied physiological pressures might accomplish this with adult cells was 

unknown. Our results indicated that, although intermittent pressurization did seem to 

stimulate adult cells to produce the ECM, the concentrations of the ECM were much greater 

in constructs created using foal cells. Since native concentrations of the ECM were never 

obtained using adult cells, foal cells will most likely be used for all future experiments. 

Physiological intermittent pressurization was found to increase the concentration of 

sulfated glycosaminoglycan (s-GAG) in regenerated constructs at both pressures tested (500 

and 1000 psi), and increasing the level of pressure was found to further increase the 

concentration of s-GAG. Using dynamic loading to increase s-GAG production by articular 

chondrocytes over short time periods has been described by many researchers [11-14]. Since 

we noted the same trends in our system over long time intervals, we felt confident that our 

system was working as predicted. For the first time we saw an increase in the concentration 

of collagen in constructs cultured at 1000 psi. Since this increase was not noted in 500 psi 

pressurized or control constructs in stagnant cultures, this indicated that some minimum level 

of dynamic force may be needed to stimulate collagen production by articular chondrocytes. 

Although stagnant (minimum required medium perfusion) cultures were effective in 

demonstrating the effects of pressure on matrix production, they typically produced 
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regenerated tissue which was smaller in size and mass than regenerated constructs cultured in 

mixed medium systems due to the diffusional limitations of the cellular metabolites. By 

modifying our system setup, we were able to combine mixing with pressiuization, something 

which has never been done before with regenerating cartilage cultures. When samples were 

isolated after being cultured in a mixed and pressurized environment, the benefits of mixing 

were noticed immediately. The average construct mass and size was two to three times larger 

than those harvested in stagnant pressurized cultures and, since we could culture twice as 

many constructs, the total mass isolated from each reactor was seven to eight times larger. 

When comparing the concentrations of the extracellular matrix in stagnant and mixed 

pressurized cultures, the benefits of mixing might not be immediately noticeable (see Fig. 1 

and Fig. 2). Both of these data sets were analyzed at 4, 5, and 6 weeks total culture time for 

constructs 

••—Stagnant 

• • • Mixed 

Week 

Figure 1. GAG concentrations in stagnant and mixed pressurized cultures up to 6 weeks. 
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Figure 2. Collagen concentrations in stagnant and mixed pressurized cultures up to 6 weeks. 

dynamically seeded for approximately one week and pressurized at 500 psi up to 6 weeks 

(stagnant cultures previously reported ECM concentrations after 3,4 and 5 weeks of 

pressurized culture, not including the week of dynamic seeding). Although the concentration 

of GAG was greater in stagnant cultures after 6 weeks, both constructs had native 

concentrations of GAG and, once again, the mixed samples were two to three times as large 

as stagnant samples. There appears to be no effect of mixing on the concentration of collagen 

after 6 weeks even though the total collagen content per sample was greater in mixed 

samples. One reason the concentrations of the extracellular matrix components in 

regenerated samples may have appeared different between stagnant and mixed pressurized 

cultures was that the fluid velocity through the reaction space was much lower than that 
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experienced in spinner flasks. In order for regenerating samples to experience an equivalent 

flow in each reactor equivalent to that of constructs isolated within spiimer flasks, a flow rate 

of approximately 1,600 ml/min must be used. At this time, flow rates that large are not 

possible in our reactors. The maximum flow rate we can use, which allows us to maintain a 

stable pressurized environment, is only approximately 3 ml/min. Even though this value is 

two orders of magnitude lower than that in spinner flasks, it does effectively provide the 

isolated cells with the nutrients they need for normal cellular metabolism. Apparently, if the 

constructs are cultured in a mixed environment (spinner flasks) for long enough to establish 

an initial matrix, tliey do not require large flow rates once transferred to the pressurized 

environment. 

When pressurized and mixed culture environments were combined, the concentration 

of collagen, even at 500 psi, was greater than in constructs cultured in a single environment. 

This was not seen in stagnant cultures at 500 psi but was observed in stagnant cultures at 

1000 psi. We had previously concluded that some minimum level of dynamic force may be 

needed to stimulate collagen production, a conclusion which still holds true. By combining 

compressive and shear forces, collagen production can be stimulated in the same manner as 

increasing the level of compressive force. Most likely increasing the compressive force 

above 500 psi in cultures combining pressure and mixing will further increase the 

concentration in collagen found in regenerated constructs. However, cell/polymer constructs 

may require additional time in a mixed envirormient so that the initial matrix that develops 

can withstand an increase in compressive force. 



www.manaraa.com

132 

Since a correlation between the compressive modulus and the concentration of 

sulfated glycosaminoglycan was only observed in samples cultured mostly in a pressurized 

environment, the application of pressure to regenerating constructs may influence the 

structural development of the tissue in ways that different types, or the absence, of force 

cannot. Other studies involving mechanical compression have reported simultaneous 

increases in GAG content and modulus levels, however connections between the two were 

not discussed [15]. One possible explanation is that intermittent pressurization influences 

aggregation of GAG, which would help form a stronger, more cohesive matrix. Whether or 

not the GAG produced in regenerated samples has aggregated to the same extent as tissue 

found in vivo is unlikely, and, if it has not, could be one of the reasons that regenerated 

samples have yet to reach compressive strengths normally exhibited by native tissue. Until a 

regenerated tissue can be developed that can repeatedly withstand physiological loading, 

graft tissue created in vitro and implanted in vivo will not be functional. From our studies, it 

appears that pressurization is needed to produce mechanically stable tissue. 

Recommendations for Future Research 

One of the advantages of the reaction system developed for oiu" studies is that it can 

be set up in a number of different operating configxurations. This allows the user to explore 

the effects of many different culture conditions on regenerating articular cartilage in vitro. 

For example, changes in frequency of pressure, level of pressure, medium flow rate, type of 

medium, and type of biomaterial carrier can be easily accomplished. From our studies up to 

now, many key culture conditions have been investigated which produce regenerated 
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constructs most like that found in vivo and should not be changed. Foal articular 

chondrocytes should be used in order to maximize the production of the extracellular matrix. 

Dynamic mixing should also be used to establish a stable initial matrix in cell/polymer 

constructs, however, the time needed to develop a stable matrix should be explored. The 

modified tissue baskets which were used as support cages in the final experiment (chapter 4) 

eliminated the need for adhesives within each reactor and, by allowing flow through the 

basket, created regenerated tissue larger than constructs cultured on steel support cages. 

These baskets should be used in order to maximize the flow of medium over the regenerating 

cell/polymer constructs. 

When we initially designed the reaction system, there was no need for high flow rates 

of medium throughout each reactor so a low-flow, multichannel pump was acquired to 

provide medium to each reactor at the same rate. To achieve greater volumetric flow rates in 

the reaction space, a new pump must be purchased and each reactor must be modified slightly 

(larger bore sizes for the "medium in" and "medium out" ports) to allow a more uniform 

medium flow over the constructs. By increasing the flow through each reactor, regenerated 

constructs should be larger in size and perhaps have greater concentrations of the 

extracellular matrix. One detail that needs to be considered before making any changes in the 

internal volume of each reactor is that increasing the volume will increase the deflection 

distance of the reaction piston when a reactor is pressurized. 

Greater concentrations of the extracellular matrix can be achieved by increasing the 

cell seeding densities in mixed cultures [16]. In our studies, polymer constructs were seeded 

between 4 to 7 x 10® cells per construct. At these concentrations, we were able to achieve 
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native concentrations of GAG and cells. Perhaps increasing the cell seeding densities by a 

factor of two or more would establish a stable matrix in regenerating constructs cultured in 

mixed systems in a shorter period of time. Since the cells are the sole producers of the 

extracellular matrix in regenerating constructs, increasing their concentrations throughout the 

polymer constructs should decrease the culture time needed to achieve in vivo levels of the 

extracellular matrix. 

There are a few forms of analysis which can be used on regenerated constructs which 

were not used in our investigations. Chromatographic techniques may possibly be used to 

determine to what extent the GAG produced in tissue developed in vitro has aggregated. By 

also analyzing native and control tissue, the effects of pressurization on the formation of 

GAG aggregates could be described. Since the assay used to determine the concentration of 

collagen in regenerated samples only quantified total collagen, the amount of type 11 collagen 

(the type comprising native tissue) produced was unknown. Qualitative assessments of 

collagen type can be made using fluorescence microscopy [6] while quantitative assessments 

can be made by combining the hydroxyproline assay with cyanogen bromide ratio analysis 

[17]. One other form of qualitative analysis that can be used to assess regenerated constructs 

is confocal microscopy. This form of microscopy nondestructively takes optical sections of a 

sample and allows the user to three-dimensionally reconstruct the sample with computer 

software. This could be especially useful in determining the distribution of the extracellular 

matrix throughout regenerated samples. 

Perhaps the greatest challenge in regenerating articular cartilage is developing tissue 

with native concentrations of collagen. As described in chapter 4, there are many separate 



www.manaraa.com

135 

influences that can be combined in our system to maximize collagen production. Growth 

factors, biomaterial carrier type, and some minimal level of dynamic force have all been 

shown to increase collagen production. It may just be a matter of culturing tissue for a long 

enough period of time to allow the extracellular matrix to fully develop. Since type II 

collagen is the main organic component comprising native tissue, it is my opinion that 

functional regenerated cartilage must consist of in vivo collagen concentrations. 
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APPENDIX A. RAW DATA 

Chapter 2 

Table 1. Cell densities found in figure 3. 

Control Pressurized 
Week Concentration, Concentration, 

X lOVg tissue X lOVg tissue 

3 2.12 + 0.54 2.51 +0.77 

4 4.20 + 0.36 4.71 +0.26 

5 7.29 + 2.51 5.18 + 2.51 

Table 2. GAG concentrations found in figure 4. 

Control Pressurized 
Week Concentration, Concentration, 

mg/g tissue mg/g tissue 

3 4.40 + 1.76 24.45 + 1.76 

4 40.19 + 17.78 79.35+ 12.57 

5 19.57 + 42.45 89.28 + 42.45 
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Table 3. Compressive modulus' and GAG concentrations found in figure 5. 

Compressive GAG 
Data Point Modulus, Concentration, 

MPa mg/g tissue 

1 0.012 24.45 

2 0.063 79.35 

3 0.057 89.28 

Table 4. Collagen concentrations found in figure 6. 

Control Pressurized 
Week Concentration, Concentration, 

mg/g tissue mg/g tissue 

3 3.38 + 0.55 2.34 + 0.78 

4 2.07 + 0.44 2.71 +0.31 

5 5.8 + 2.3 5.4 + 2.3 

Chapter 3 

Table 1. Foal GAG concentrations found in figure la. 

1000 psi Sample 500 psi Sample Control Sample 
Week Concentration, Concentration, Concentration, 

mg/g tissue mg/g tissue mg/g tissue 

3 99.49 + 2.22 24.45+ 1.81 3.21 + 1.34 

4 115.30+ 19.02 79.35 + 15.53 29.53 + 14.37 

5 133.70 + 38.51 89.28 + 31.44 25.95 + 24.35 
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Table 2. Adult GAG concentrations found in figure lb. 

Week 
1000 psi Sample 
Concentration, 

mg/g tissue 

500 psi Sample 
Concentration, 

mg/g tissue 

Control Sample 
Concentration, 

mg/g tissue 

3 

4 

5 

1.17 + 2.56 

1.44 + 2.02 

3.47+1.42 

8.21 + 1.81 

5.23+1.42 

5.72+1.01 

2.37+1.48 

1.76+1.42 

2.04+1.01 

Table 3. Foal collagen concentrations found in figure 2a. 

Week 
1000 psi Sample 
Concentration, 

mg/g tissue 

500 psi Sample 
Concentration, 

mg/g tissue 

Control Sample 
Concentration, 

mg/g tissue 

3 

4 

5 

5.93 + 1.03 

9.88 + 0.64 

11.93+2.70 

2.48+1.03 

3.04 + 0.45 

6.66+1.91 

2.98 + 0.59 

2.01 + 0.45 

6.30+1.56 

Table 4. Adult collagen concentrations found in figure 2b. 

Week 
1000 psi Sample 
Concentration, 

mg/g tissue 

500 psi Sample 
Concentration, 

mg/g tissue 

Control Sample 
Concentration, 

mg/g tissue 

3 

4 

1.69 + 0.35 

4.91 + 1.20 

7.31+0.45 

1.14 + 0.50 

1.25 + 0.85 

3.04 + 0.32 

1.67 + 0.29 

1.24 + 0.85 

0.45 + 0.32 



www.manaraa.com

141 

Chapter 4 

Table 1. GAG concentrations found in figure 1. 

"Is5c" "ls5p" "2s4p" "4s2p" "6s" 
Week Concentration, Concentration, Concentration, Concentration, Concentration, 

mg/g tissue mg/g tissue mg/g tissue mg/g tissue mg/g tissue 

4 1.88 + 14.77 11.47 + 10.45 38.26+ 10.45 25.33 + 10.45 22.28 + 14.77 

5 8.13 + 5.93 26.76 + 6.85 84.60 + 5.93 39.46 + 5.93 38.41 +8.39 

6 15.76+ 16.08 56.33 + 18.59 137.69+ 16.08 83.48 + 22.74 72.87 + 22.74 

Table 2. Collagen concentrations found in figure 2. 

"Is5c" "ls5p" "2s4p" "4s2p" "6s" 
Week Concentration, Concentration, Concentration, Concentration, Concentration, 

mg/g tissue mg/g tissue mg/g tissue mg/g tissue mg/g tissue 

4 0.38 + 0.50 1.51 +0.36 3.15 + 0.36 4.31 +0.36 4.77 + 0.50 

5 1.23 + 0.48 4.80 + 0.68 8.30 + 0.48 6.09 + 0.53 5.47 + 0.68 

6 1.10 + 0.73 5.41 +0.84 8.88 + 0.73 8.53 + 1.03 5.77 + 1.03 
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Table 3. Compressive modulus' and GAG concentrations found in figure 3a. 

Data Point 
GAG 

Concentration, 
Compressive 

Modulus, 
mg/g tissue MPa 

1 11.47 0.067 

2 26.76 0.074 

3 38.26 0.071 

4 56.33 0.076 

5 84.60 0.091 

6 137.69 0.096 

Table 4. Compressive modulus' and GAG concentrations found in figure 3b, 

Data Point 
GAG 

Concentration, 
Compressive 

Modulus, 
mg/g tissue MPa 

1 22.28 0.069 

2 25.33 0.072 

3 38.41 0.080 

4 39.46 0.084 

5 72.87 0.078 

6 83.48 0.086 
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Table 5. Dry weights of 6 week samples in all five experiments. EPPR values are from 
chapter 3 experiments. 

Culture Environment Dry Weight, mg 

IPPR, Foal at 500 psi 3.6 

IPPR, Foal at 1000 psi 3.0 

1 spin/5 control 4.1 

1 spin/5 pressure 4.6 

2 spin/4 pressure 6.2 

4 spin/2 pressure 6.8 

6 spin 8.4 

APPENDIX B. DIFFUSIONAL ANALYSIS 

The following is an order of magnitude analysis to compare the volumetric fluxes 

through the cell/polymer scaffolds in the three separate culture environments used for this 

work (compression/perfusion reactors with no flow, compression/perfiision reactors with 

nearly continuous fluid flow, spinner flasks with turbulent flow). 

Compression/perfusion reactors with no flow - pure difflision 

For pure diffusion, estimate the mass flux as: 

J, = Defl(AC/AL) (1) 
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The effective diffiisivity can be defined as: 

Deff = Dbulk(£/'^) (2) 

where s is the polymer porosity and t is the tortuosity. Using oxygen as the limiting nutrient 

(solute) and water as the solvent, the bulk diffiisivity at 37 °C is 4.76 x 10'^ cmVsec. 

Assuming the tortuosity is approximately 1 for a porosity of 0.97, equation (2) becomes: 

Deff = 4.76 X 10'^ cmVsec(0.97/l) = 4,62 x 10'^ cmVsec 

Each polymer pad is 0.5 cm thick with medium on all sides so that the maximum distance 

oxygen has to diffuse is AL = 0.25 cm. Assuming that the concentration of oxygen in the 

middle of each pad is approximately 0 and the concentration of oxygen at the surface is the 

solubility of oxygen in water (8 x 10'® g-'cm^), equation (1) becomes: 

Jn, = 4.62 X 10'^ cmVsec (8 x 10'^ g/cmVO.25 cm) 

= 1.48 X 10"^ g/(cm"*sec) 

Dividing the mass flux by the density of gaseous oxygen gives the volumetric flux as: 

Jy = [1.48 X 10'^ g/(cm"*sec)]/1.43 x 10'^ g/cm^ 

Jv = 1.04 X 10"^ cm/sec 

Compression/perfusion reactors with nearly continuous fliud flow - Darcy's Law 

Using Darcy's Law for estimating the volumetric flux of a solute through a polymer 

membrane, the volumetric flux is the same as the velocity of the solute through the pad. The 

maximum velocity through the reactors can be calculate by dividing the volumetric flow rate 
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by the cross-sectional area of each reactor. Assuming a flow rate of 5 ml/min and a cross-

sectional area of O.Sti cm% the velocity (and volumetric flux) is: 

V (or Jv) = (5 cmVmin)/(60 sec/min * 1.57 cm^) = 5.31 x 10"^ cm/sec 

Spinner flasks with turbulent flow - Darcy's Law 

Use Darcy's law once again to estimate the volumetric flux as the fluid velocity through the 

pad. Assume the fluid velocity is the same as the speed of the impeller edge which mixes the 

medium. The distance the this edge cover is: 

d = Inr = 2* 7C * 2 cm = 12.57 cm 

At 50 rpm's the velocity is estimated to be: 

V (or J,.) = 12.57cm (50 rpm/60 sec) = 10.5 cm/sec 

Conclusions 

The flux in the reactors with fluid flow is approximately 4 orders of magnitude of pure 

diffusion alone. The flux in the spinners is approximately 3 orders of magnitude above the 

reactor with fluid flow and 7 orders of magnitude above pure diffusion. AH fluxes calculated 

were the highest values possible and could likely be up to an order of magnitude lower. All 

fluxes will decrease as the polymer fills with extracellular matrix. 
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